Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Clin Cancer Res ; 43(1): 263, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39272209

ABSTRACT

BACKGROUND: Macrophage-based cell therapies have shown modest success in clinical trials, which can be attributed to their phenotypic plasticity, where transplanted macrophages get reprogrammed towards a pro-tumor phenotype. In most tumor types, including melanoma, the balance between antitumor M1-like and tumor-promoting M2-like macrophages is critical in defining the local immune response with a higher M1/M2 ratio favoring antitumor immunity. Therefore, designing novel strategies to increase the M1/M2 ratio in the TME has high clinical significance and benefits macrophage-based cell therapies. METHODS: In this study, we reprogrammed antitumor and proinflammatory macrophages ex-vivo with HDAC6 inhibitors (HDAC6i). We administered the reprogrammed macrophages intratumorally as an adoptive cell therapy (ACT) in the syngeneic SM1 murine melanoma model and patient-derived xenograft bearing NSG-SGM3 humanized mouse models. We phenotyped the tumor-infiltrated immune cells by flow cytometry and histological analysis of tumor sections for macrophage markers. We performed bulk RNA-seq profiling of murine bone marrow-derived macrophages treated with vehicle or HDAC6i and single-cell RNA-seq profiling of SM1 tumor-infiltrated immune cells to determine the effect of intratumor macrophage ACT on the tumor microenvironment (TME). We further analyzed the single-cell data to identify key cell-cell interactions and trajectory analysis to determine the fate of tumor-associated macrophages post-ACT. RESULTS: Macrophage ACT resulted in diminished tumor growth in both mouse models. We also demonstrated that HDAC6 inhibition in macrophages suppressed the polarization toward tumor-promoting phenotype by attenuating STAT3-mediated M2 reprogramming. Two weeks post-transplantation, ACT macrophages were viable, and inhibition of HDAC6 rendered intratumor transplanted M1 macrophages resistant to repolarization towards protumor M2 phenotype in-vivo. Further characterization of tumors by flow cytometry, single-cell transcriptomics, and single-cell secretome analyses revealed a significant enrichment of antitumor M1-like macrophages, resulting in increased M1/M2 ratio and infiltration of CD8 effector T-cells. Computational analysis of single-cell RNA-seq data for cell-cell interactions and trajectory analyses indicated activation of monocytes and T-cells in the TME. CONCLUSIONS: In summary, for the first time, we demonstrated the potential of reprogramming macrophages ex-vivo with HDAC6 inhibitors as a viable macrophage cell therapy to treat solid tumors.


Subject(s)
Macrophages , Melanoma , Animals , Mice , Humans , Macrophages/immunology , Macrophages/metabolism , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Cell- and Tissue-Based Therapy/methods , Cell Line, Tumor , Tumor Microenvironment , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Cellular Reprogramming , Disease Models, Animal
2.
Development ; 151(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39082371

ABSTRACT

Tissue-resident macrophages contribute to the organogenesis of many tissues. Growth of the prostate is regulated by androgens during puberty, yet androgens are considered immune suppressive. In this study, we characterized the localization, androgen receptor expression and hematopoietic origin of prostate macrophages, and transiently ablated macrophages during postnatal prostate organogenesis in the mouse. We show that myeloid cells were abundant in the prostate during puberty. However, nuclear androgen receptor expression was not detected in most macrophages. We found Cx3cr1, a marker for macrophages, monocytes and dendritic cells, expressed in interstitial macrophages surrounding the prostate and associated with nerve fibers. Furthermore, we provide evidence for the co-existence of embryonic origin, self-renewing, tissue-resident macrophages and recruited macrophages of bone-marrow monocyte origin in the prostate during puberty. Our findings suggest that prostate macrophages promote neural patterning and may shed further light on our understanding of the role of the innate immune system in prostate pathology in response to inflammation and in cancer.


Subject(s)
CX3C Chemokine Receptor 1 , Macrophages , Prostate , Receptors, Androgen , Male , Animals , Prostate/metabolism , Macrophages/metabolism , Mice , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Mice, Inbred C57BL , Organogenesis , Monocytes/metabolism
3.
Oncogene ; 42(17): 1347-1359, 2023 04.
Article in English | MEDLINE | ID: mdl-36882525

ABSTRACT

The Tripartite motif-containing 28 (TRIM28) transcriptional cofactor is significantly upregulated in high-grade and metastatic prostate cancers. To study the role of TRIM28 in prostate cancer progression in vivo, we generated a genetically-engineered mouse model, combining prostate-specific inactivation of Trp53, Pten and Trim28. Trim28 inactivated NPp53T mice developed an inflammatory response and necrosis in prostate lumens. By conducting single-cell RNA sequencing, we found that NPp53T prostates had fewer luminal cells resembling proximal luminal lineage cells, which are cells with progenitor activity enriched in proximal prostates and prostate invagination tips in wild-type mice with analogous populations in human prostates. However, despite increased apoptosis and reduction of cells expressing proximal luminal cell markers, we found that NPp53T mouse prostates evolved and progressed to invasive prostate carcinoma with a shortened overall survival. Altogether, our findings suggest that TRIM28 promotes expression of proximal luminal cell markers in prostate tumor cells and provides insights into TRIM28 function in prostate tumor plasticity.


Subject(s)
Cell Plasticity , Prostatic Neoplasms , Humans , Male , Mice , Animals , Prostatic Neoplasms/pathology , Tripartite Motif-Containing Protein 28/genetics , Tripartite Motif-Containing Protein 28/metabolism , Prostate/pathology , Disease Models, Animal , Neoplastic Stem Cells/pathology
4.
Development ; 149(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35726824

ABSTRACT

Prostate organogenesis begins during embryonic development and continues through puberty when the prostate becomes an important exocrine gland of the male reproductive system. The specification and growth of the prostate is regulated by androgens and is largely a result of cell-cell communication between the epithelium and mesenchyme. The fields of developmental and cancer biology have long been interested in prostate organogenesis because of its relevance for understanding prostate diseases, and research has expanded in recent years with the advent of novel technologies, including genetic-lineage tracing, single-cell RNA sequencing and organoid culture methods, that have provided important insights into androgen regulation, epithelial cell origins and cellular heterogeneity. We discuss these findings, putting them into context with what is currently known about prostate organogenesis.


Subject(s)
Organogenesis , Prostate , Androgens , Epithelial Cells , Epithelium , Humans , Male , Mesoderm , Organogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL