Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nature ; 568(7752): 336-343, 2019 04.
Article in English | MEDLINE | ID: mdl-30996318

ABSTRACT

The brains of humans and other mammals are highly vulnerable to interruptions in blood flow and decreases in oxygen levels. Here we describe the restoration and maintenance of microcirculation and molecular and cellular functions of the intact pig brain under ex vivo normothermic conditions up to four hours post-mortem. We have developed an extracorporeal pulsatile-perfusion system and a haemoglobin-based, acellular, non-coagulative, echogenic, and cytoprotective perfusate that promotes recovery from anoxia, reduces reperfusion injury, prevents oedema, and metabolically supports the energy requirements of the brain. With this system, we observed preservation of cytoarchitecture; attenuation of cell death; and restoration of vascular dilatory and glial inflammatory responses, spontaneous synaptic activity, and active cerebral metabolism in the absence of global electrocorticographic activity. These findings demonstrate that under appropriate conditions the isolated, intact large mammalian brain possesses an underappreciated capacity for restoration of microcirculation and molecular and cellular activity after a prolonged post-mortem interval.


Subject(s)
Autopsy , Brain/blood supply , Brain/cytology , Cerebrovascular Circulation , Microcirculation , Swine , Animals , Brain/metabolism , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Caspase 3/metabolism , Cell Survival , Cerebral Arteries/physiology , Disease Models, Animal , Hypoxia, Brain/metabolism , Hypoxia, Brain/pathology , Inflammation/metabolism , Inflammation/pathology , Neuroglia/cytology , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Perfusion , Reperfusion Injury/prevention & control , Swine/blood , Synapses/metabolism , Synapses/pathology , Time Factors , Vasodilation
2.
Science ; 362(6420)2018 12 14.
Article in English | MEDLINE | ID: mdl-30545854

ABSTRACT

To broaden our understanding of human neurodevelopment, we profiled transcriptomic and epigenomic landscapes across brain regions and/or cell types for the entire span of prenatal and postnatal development. Integrative analysis revealed temporal, regional, sex, and cell type-specific dynamics. We observed a global transcriptomic cup-shaped pattern, characterized by a late fetal transition associated with sharply decreased regional differences and changes in cellular composition and maturation, followed by a reversal in childhood-adolescence, and accompanied by epigenomic reorganizations. Analysis of gene coexpression modules revealed relationships with epigenomic regulation and neurodevelopmental processes. Genes with genetic associations to brain-based traits and neuropsychiatric disorders (including MEF2C, SATB2, SOX5, TCF4, and TSHZ3) converged in a small number of modules and distinct cell types, revealing insights into neurodevelopment and the genomic basis of neuropsychiatric risks.


Subject(s)
Brain/embryology , Gene Expression Regulation, Developmental , Mental Disorders/genetics , Nervous System Diseases/genetics , Neurogenesis/genetics , Brain/growth & development , Epigenesis, Genetic , Epigenomics , Gene Regulatory Networks , Humans , Single-Cell Analysis , Transcriptome
3.
Claustrum ; 3(1)2018.
Article in English | MEDLINE | ID: mdl-31656555

ABSTRACT

BACKGROUND: The claustrum (CLA) has been discussed as central to integrated conscious percepts, although recent evidence has emphasized a role in detecting sensory novelty or in amplifying correlated cortical inputs. OBJECTIVE: We report that many neurons in the macaque CLA are ensheathed in perineuronal nets (PNNs), which contribute to synaptic stability and enhance neuronal excitability, among other properties. DESIGN: We visualized PNNs by wisteria floribunda agglutinin (WFA) immunohistochemistry, and quantified these in comparison these to parvalbumin+ (PV) subsets and total neurons. RESULTS: PNNs ensheath about 11% of the total neurons. These are a range of large, medium, and small neurons, likely corresponding to PV+ and/or other inhibitory interneurons. The PNNs were themselves heterogeneous, consisting of lattice-like, weakly labeled, and diffuse subtypes, and showed some regional preference for the medial CLA. CONCLUSION: The abundant neuronal labeling by PNNs in the CLA suggests an important and nuanced role for inhibition, consistent with recent physiological studies of claustrocortical circuitry. For comparison, diversified inhibition in the reticular nucleus of the thalamus (a pan-inhibitory nucleus, with extensive cortical input) exerts a spectrum of control at different local and global spatiotemporal scales. Further investigation of PNN+ neurons in the macaque CLA offers a potentially important new approach to CLA function, relevant to the human brain both in normal and diseased conditions.

4.
Science ; 359(6375): 550-555, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29217587

ABSTRACT

Somatic mosaicism in the human brain may alter function of individual neurons. We analyzed genomes of single cells from the forebrains of three human fetuses (15 to 21 weeks postconception) using clonal cell populations. We detected 200 to 400 single-nucleotide variations (SNVs) per cell. SNV patterns resembled those found in cancer cell genomes, indicating a role of background mutagenesis in cancer. SNVs with a frequency of >2% in brain were also present in the spleen, revealing a pregastrulation origin. We reconstructed cell lineages for the first five postzygotic cleavages and calculated a mutation rate of ~1.3 mutations per division per cell. Later in development, during neurogenesis, the mutation spectrum shifted toward oxidative damage, and the mutation rate increased. Both neurogenesis and early embryogenesis exhibit substantially more mutagenesis than adulthood.


Subject(s)
Brain/embryology , Gastrulation/genetics , Mosaicism , Mutagenesis , Mutation Rate , Neurogenesis/genetics , Cell Lineage/genetics , Genome, Human , Humans , Mutation , Neoplasms/genetics , Neurons , Polymorphism, Single Nucleotide , Single-Cell Analysis
5.
Nat Neurosci ; 20(12): 1787-1795, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29184206

ABSTRACT

Detailed observations of transcriptional, translational and post-translational events in the human brain are essential to improving our understanding of its development, function and vulnerability to disease. Here, we exploited label-free quantitative tandem mass-spectrometry to create an in-depth proteomic survey of regions of the postnatal human brain, ranging in age from early infancy to adulthood. Integration of protein data with existing matched whole-transcriptome sequencing (RNA-seq) from the BrainSpan project revealed varied patterns of protein-RNA relationships, with generally increased magnitudes of protein abundance differences between brain regions compared to RNA. Many of the differences amplified in protein data were reflective of cytoarchitectural and functional variation between brain regions. Comparing structurally similar cortical regions revealed significant differences in the abundances of receptor-associated and resident plasma membrane proteins that were not readily observed in the RNA expression data.


Subject(s)
Brain Chemistry/genetics , Proteomics/methods , Adolescent , Adult , Aging , Animals , Animals, Newborn , Child , Child, Preschool , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Mice , Peptide Library , RNA/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA , Tandem Mass Spectrometry , Transcriptome , Young Adult
6.
Science ; 358(6366): 1027-1032, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29170230

ABSTRACT

To better understand the molecular and cellular differences in brain organization between human and nonhuman primates, we performed transcriptome sequencing of 16 regions of adult human, chimpanzee, and macaque brains. Integration with human single-cell transcriptomic data revealed global, regional, and cell-type-specific species expression differences in genes representing distinct functional categories. We validated and further characterized the human specificity of genes enriched in distinct cell types through histological and functional analyses, including rare subpallial-derived interneurons expressing dopamine biosynthesis genes enriched in the human striatum and absent in the nonhuman African ape neocortex. Our integrated analysis of the generated data revealed diverse molecular and cellular features of the phylogenetic reorganization of the human brain across multiple levels, with relevance for brain function and disease.


Subject(s)
Macaca/genetics , Neocortex/growth & development , Neocortex/metabolism , Neural Pathways/metabolism , Pan troglodytes/genetics , Transcriptome , Animals , Gene Expression Profiling , Humans , Interneurons/metabolism , Phylogeny , Species Specificity
7.
Brain Struct Funct ; 222(9): 4131-4147, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28634624

ABSTRACT

Animal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded. Here, we established a population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space incorporating bony and facial landmarks, and delineated microstructures and three-dimensional pathways of major white matter tracts in vivo MRI/DTI and ex vivo (postmortem) DTI of ten rhesus macaque brains were acquired. Single-subject macaque brain DTI template was obtained by transforming the postmortem high-resolution DTI data into in vivo space. Ex vivo DTI of ten macaque brains was then averaged in the in vivo single-subject template space to generate population-averaged macaque brain DTI atlas. The white matter tracts were traced with DTI-based tractography. One hundred and eighteen neural structures including all cortical gyri, white matter tracts and subcortical nuclei, were labeled manually on population-averaged DTI-derived maps. The in vivo microstructural metrics of fractional anisotropy, axial, radial and mean diffusivity of the traced white matter tracts were measured. Population-averaged digital atlas integrated into in vivo space can be used to label the experimental macaque brain automatically. Bony and facial landmarks will be available for guiding invasive procedures. The DTI metric measurements offer unique insights into heterogeneous microstructural profiles of different white matter tracts.


Subject(s)
Brain Mapping , Brain/diagnostic imaging , Diffusion Tensor Imaging , Image Processing, Computer-Assisted , Macaca mulatta/anatomy & histology , White Matter/diagnostic imaging , Animals , Anisotropy , Autopsy , Brain/physiology , Female , Magnetic Resonance Imaging , Male
8.
Nature ; 539(7628): 242-247, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27830782

ABSTRACT

Sensory stimuli drive the maturation and function of the mammalian nervous system in part through the activation of gene expression networks that regulate synapse development and plasticity. These networks have primarily been studied in mice, and it is not known whether there are species- or clade-specific activity-regulated genes that control features of brain development and function. Here we use transcriptional profiling of human fetal brain cultures to identify an activity-dependent secreted factor, Osteocrin (OSTN), that is induced by membrane depolarization of human but not mouse neurons. We find that OSTN has been repurposed in primates through the evolutionary acquisition of DNA regulatory elements that bind the activity-regulated transcription factor MEF2. In addition, we demonstrate that OSTN is expressed in primate neocortex and restricts activity-dependent dendritic growth in human neurons. These findings suggest that, in response to sensory input, OSTN regulates features of neuronal structure and function that are unique to primates.


Subject(s)
Evolution, Molecular , Muscle Proteins/metabolism , Neocortex/metabolism , Neurons/metabolism , Transcription Factors/metabolism , Transcriptome , Animals , Base Sequence , Bone and Bones/metabolism , Dendrites/metabolism , Enhancer Elements, Genetic/genetics , Female , Humans , MEF2 Transcription Factors/metabolism , Macaca mulatta , Male , Mice , Molecular Sequence Data , Muscle Proteins/genetics , Muscles/metabolism , Neocortex/cytology , Neurons/cytology , Organ Specificity , Species Specificity , Transcription Factors/genetics
9.
Cell Rep ; 16(10): 2576-2592, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27568284

ABSTRACT

The mechanisms underlying Zika virus (ZIKV)-related microcephaly and other neurodevelopment defects remain poorly understood. Here, we describe the derivation and characterization, including single-cell RNA-seq, of neocortical and spinal cord neuroepithelial stem (NES) cells to model early human neurodevelopment and ZIKV-related neuropathogenesis. By analyzing human NES cells, organotypic fetal brain slices, and a ZIKV-infected micrencephalic brain, we show that ZIKV infects both neocortical and spinal NES cells as well as their fetal homolog, radial glial cells (RGCs), causing disrupted mitoses, supernumerary centrosomes, structural disorganization, and cell death. ZIKV infection of NES cells and RGCs causes centrosomal depletion and mitochondrial sequestration of phospho-TBK1 during mitosis. We also found that nucleoside analogs inhibit ZIKV replication in NES cells, protecting them from ZIKV-induced pTBK1 relocalization and cell death. We established a model system of human neural stem cells to reveal cellular and molecular mechanisms underlying neurodevelopmental defects associated with ZIKV infection and its potential treatment.


Subject(s)
Mitosis , Neural Stem Cells/enzymology , Neural Stem Cells/virology , Neuroepithelial Cells/virology , Neuroglia/virology , Protein Serine-Threonine Kinases/metabolism , Zika Virus/pathogenicity , Brain/embryology , Brain/pathology , Brain/virology , Cell Death/drug effects , Centrosome/drug effects , Centrosome/metabolism , Fetus/virology , Gene Expression Profiling , Humans , Immunity, Innate/drug effects , Microcephaly/pathology , Microcephaly/virology , Mitochondria/drug effects , Mitochondria/metabolism , Mitosis/drug effects , Neocortex/pathology , Neural Stem Cells/immunology , Neural Stem Cells/ultrastructure , Neuroepithelial Cells/drug effects , Neuroepithelial Cells/immunology , Neuroepithelial Cells/ultrastructure , Neuroglia/pathology , Neuroglia/ultrastructure , Neurons/drug effects , Neurons/pathology , Neurons/virology , Neuroprotective Agents/pharmacology , Nucleosides/pharmacology , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Spinal Cord/pathology , Transcription, Genetic/drug effects , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus/physiology , Zika Virus/ultrastructure , Zika Virus Infection/pathology , Zika Virus Infection/virology , Axl Receptor Tyrosine Kinase
10.
Neuron ; 89(6): 1208-1222, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26924435

ABSTRACT

Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS, and they provide a transcriptional framework for further investigating DS neuropathogenesis.


Subject(s)
Brain , Cell Differentiation/genetics , Down Syndrome/pathology , Gene Expression Regulation, Developmental/genetics , Myelin Sheath/metabolism , Oligodendroglia/pathology , Action Potentials/genetics , Adolescent , Adult , Animals , Brain/growth & development , Brain/metabolism , Brain/pathology , Cell Differentiation/physiology , Child , Child, Preschool , Chromosomes, Human, Pair 17/genetics , Disease Models, Animal , Down Syndrome/genetics , Down Syndrome/physiopathology , Female , Gene Expression Profiling , Humans , Infant , Infant, Newborn , Male , Mice , Mice, Transgenic , Mosaicism , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , Myelin Sheath/pathology , Myelin Sheath/ultrastructure , Neural Conduction/genetics , Postmortem Changes , Trisomy/genetics , White Matter/pathology , White Matter/ultrastructure , Young Adult
11.
Front Neuroanat ; 10: 11, 2016.
Article in English | MEDLINE | ID: mdl-26941612

ABSTRACT

The cerebral wall of the human fetal brain is composed of transient cellular compartments, which show characteristic spatiotemporal relationships with intensity of major neurogenic events (cell proliferation, migration, axonal growth, dendritic differentiation, synaptogenesis, cell death, and myelination). The aim of the present study was to obtain new quantitative data describing volume, surface area, and thickness of transient compartments in the human fetal cerebrum. Forty-four postmortem fetal brains aged 13-40 postconceptional weeks (PCW) were included in this study. High-resolution T1 weighted MR images were acquired on 19 fetal brain hemispheres. MR images were processed using in-house software (MNI-ACE toolbox). Delineation of fetal compartments was performed semi-automatically by co-registration of MRI with histological sections of the same brains, or with the age-matched brains from Zagreb Neuroembryological Collection. Growth trajectories of transient fetal compartments were reconstructed. The composition of telencephalic wall was quantitatively assessed. Between 13 and 25 PCW, when the intensity of neuronal proliferation decreases drastically, the relative volume of proliferative (ventricular and subventricular) compartments showed pronounced decline. In contrast, synapse- and extracellular matrix-rich subplate compartment continued to grow during the first two trimesters, occupying up to 45% of telencephalon and reaching its maximum volume and thickness around 30 PCW. This developmental maximum coincides with a period of intensive growth of long cortico-cortical fibers, which enter and wait in subplate before approaching the cortical plate. Although we did not find significant age related changes in mean thickness of the cortical plate, the volume, gyrification index, and surface area of the cortical plate continued to exponentially grow during the last phases of prenatal development. This cortical expansion coincides developmentally with the transformation of embryonic cortical columns, dendritic differentiation, and ingrowth of axons. These results provide a quantitative description of transient human fetal brain compartments observable with MRI. Moreover, they will improve understanding of structural-functional relationships during brain development, will enable correlation between in vitro/in vivo imaging and fine structural histological studies, and will serve as a reference for study of perinatal brain injuries.

12.
Biol Psychiatry ; 79(5): 372-382, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-25199956

ABSTRACT

BACKGROUND: Genome-wide association studies have not revealed any risk-conferring common genetic variants in Tourette syndrome (TS), requiring the adoption of alternative approaches to investigate the pathophysiology of this disorder. METHODS: We obtained the basal ganglia transcriptome by RNA sequencing in the caudate and putamen of nine TS and nine matched normal control subjects. RESULTS: We found 309 downregulated and 822 upregulated genes in the caudate and putamen (striatum) of TS individuals. Using data-driven gene network analysis, we identified 17 gene coexpression modules associated with TS. The top-scoring downregulated module in TS was enriched in striatal interneuron transcripts, which was confirmed by decreased numbers of cholinergic and gamma-aminobutyric acidergic interneurons by immunohistochemistry in the same regions. The top-scoring upregulated module was enriched in immune-related genes, consistent with activation of microglia in patients' striatum. Genes implicated by copy number variants in TS were enriched in the interneuron module, as well as in a protocadherin module. Module clustering revealed that the interneuron module was correlated with a neuronal metabolism module. CONCLUSIONS: Convergence of differential expression, network analyses, and module clustering, together with copy number variants implicated in TS, strongly implicates disrupted interneuron signaling in the pathophysiology of severe TS and suggests that metabolic alterations may be linked to their death or dysfunction.


Subject(s)
Interneurons/metabolism , Putamen/metabolism , Tourette Syndrome/genetics , Transcriptome , Acetylcholine/metabolism , Adult , Aged , Aged, 80 and over , DNA Copy Number Variations , Female , Gene Expression Profiling , Gene Regulatory Networks , Genome-Wide Association Study , Humans , Male , Middle Aged , Sequence Analysis, RNA , gamma-Aminobutyric Acid/metabolism
13.
J Neurosci ; 35(12): 4903-16, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25810521

ABSTRACT

A sheet of choroid plexus epithelial cells extends into each cerebral ventricle and secretes signaling factors into the CSF. To evaluate whether differences in the CSF proteome across ventricles arise, in part, from regional differences in choroid plexus gene expression, we defined the transcriptome of lateral ventricle (telencephalic) versus fourth ventricle (hindbrain) choroid plexus. We find that positional identities of mouse, macaque, and human choroid plexi derive from gene expression domains that parallel their axial tissues of origin. We then show that molecular heterogeneity between telencephalic and hindbrain choroid plexi contributes to region-specific, age-dependent protein secretion in vitro. Transcriptome analysis of FACS-purified choroid plexus epithelial cells also predicts their cell-type-specific secretome. Spatial domains with distinct protein expression profiles were observed within each choroid plexus. We propose that regional differences between choroid plexi contribute to dynamic signaling gradients across the mammalian cerebroventricular system.


Subject(s)
Cerebrospinal Fluid/metabolism , Choroid Plexus/metabolism , Fourth Ventricle/metabolism , Lateral Ventricles/metabolism , Transcriptome , Aging/metabolism , Animals , Epithelial Cells/metabolism , Female , Humans , Macaca mulatta , Male , Mice
14.
Nat Commun ; 6: 6404, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25752243

ABSTRACT

Recent studies implicate chromatin modifiers in autism spectrum disorder (ASD) through the identification of recurrent de novo loss of function mutations in affected individuals. ASD risk genes are co-expressed in human midfetal cortex, suggesting that ASD risk genes converge in specific regulatory networks during neurodevelopment. To elucidate such networks, we identify genes targeted by CHD8, a chromodomain helicase strongly associated with ASD, in human midfetal brain, human neural stem cells (hNSCs) and embryonic mouse cortex. CHD8 targets are strongly enriched for other ASD risk genes in both human and mouse neurodevelopment, and converge in ASD-associated co-expression networks in human midfetal cortex. CHD8 knockdown in hNSCs results in dysregulation of ASD risk genes directly targeted by CHD8. Integration of CHD8-binding data into ASD risk models improves detection of risk genes. These results suggest loss of CHD8 contributes to ASD by perturbing an ancient gene regulatory network during human brain development.


Subject(s)
Autism Spectrum Disorder/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Gene Regulatory Networks/genetics , Models, Neurological , Nervous System/embryology , Transcription Factors/metabolism , Animals , Chromatin Assembly and Disassembly/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Gene Knockdown Techniques , Humans , Mice , Nervous System/metabolism , Neural Stem Cells/metabolism , Transcription Factors/genetics
15.
Methods ; 73: 27-37, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25448302

ABSTRACT

During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain.


Subject(s)
Brain Mapping/methods , Brain/embryology , Brain/growth & development , Diffusion Tensor Imaging/methods , White Matter/embryology , White Matter/growth & development , Brain/metabolism , Child , Child, Preschool , Female , Fetal Development/physiology , Humans , Male , Pregnancy , Statistics as Topic/methods , White Matter/metabolism
16.
Nature ; 508(7495): 199-206, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24695229

ABSTRACT

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Subject(s)
Brain/metabolism , Fetus/metabolism , Gene Expression Regulation, Developmental/genetics , Transcriptome , Anatomy, Artistic , Animals , Atlases as Topic , Brain/embryology , Conserved Sequence/genetics , Fetus/cytology , Fetus/embryology , Gene Regulatory Networks/genetics , Humans , Mice , Neocortex/embryology , Neocortex/metabolism , Species Specificity
17.
Proc Natl Acad Sci U S A ; 111(13): 5036-41, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24707050

ABSTRACT

The pattern of neurodegeneration in Alzheimer's disease (AD) is very distinctive: neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau selectively affect pyramidal neurons of the aging association cortex that interconnect extensively through glutamate synapses on dendritic spines. In contrast, primary sensory cortices have few NFTs, even in late-stage disease. Understanding this selective vulnerability, and why advancing age is such a high risk factor for the degenerative process, may help to reveal disease etiology and provide targets for intervention. Our study has revealed age-related increase in cAMP-dependent protein kinase (PKA) phosphorylation of tau at serine 214 (pS214-tau) in monkey dorsolateral prefrontal association cortex (dlPFC), which specifically targets spine synapses and the Ca(2+)-storing spine apparatus. This increase is mirrored by loss of phosphodiesterase 4A from the spine apparatus, consistent with increase in cAMP-Ca(2+) signaling in aging spines. Phosphorylated tau was not detected in primary visual cortex, similar to the pattern observed in AD. We also report electron microscopic evidence of previously unidentified vesicular trafficking of phosphorylated tau in normal association cortex--in axons in young dlPFC vs. in spines in aged dlPFC--consistent with the transneuronal lesion spread reported in genetic rodent models. pS214-Tau was not observed in normal aged mice, suggesting that it arises with the evolutionary expansion of corticocortical connections in primates, crossing the threshold into NFTs and degeneration in humans. Thus, the cAMP-Ca(2+) signaling mechanisms, needed for flexibly modulating network strength in young association cortex, confer vulnerability to degeneration when dysregulated with advancing age.


Subject(s)
Aging/pathology , Cyclic AMP-Dependent Protein Kinases/metabolism , Nerve Degeneration/enzymology , Nerve Degeneration/pathology , Prefrontal Cortex/enzymology , Prefrontal Cortex/pathology , tau Proteins/metabolism , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Macaca mulatta , Mice , Models, Biological , Phosphorylation , Protein Transport , Transport Vesicles/metabolism
18.
Neuron ; 81(2): 321-32, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24373884

ABSTRACT

Transcriptional events involved in the development of human cerebral neocortex are poorly understood. Here, we analyzed the temporal dynamics and laterality of gene expression in human and macaque monkey neocortex. We found that interareal differences exhibit a temporal hourglass pattern, dividing the human neocortical development into three major phases. The first phase, corresponding to prenatal development, is characterized by the highest number of differential expressed genes among areas and gradient-like expression patterns, including those that are different between human and macaque. The second, preadolescent phase, is characterized by lesser interareal expression differences and by an increased synchronization of areal transcriptomes. During the third phase, from adolescence onward, differential expression among areas increases again driven predominantly by a subset of areas, without obvious gradient-like patterns. Analyses of left-right gene expression revealed population-level global symmetry throughout the fetal and postnatal time span. Thus, human neocortical topographic gene expression is temporally specified and globally symmetric.


Subject(s)
Functional Laterality/physiology , Gene Expression Regulation, Developmental/physiology , Neocortex , Nerve Tissue Proteins/genetics , Adolescent , Adult , Age Factors , Aged , Analysis of Variance , Animals , Animals, Newborn , Child , Child, Preschool , Female , Fetus , Gene Expression Profiling , Gene Regulatory Networks , Humans , Infant , Infant, Newborn , Macaca mulatta , Male , Middle Aged , Neocortex/enzymology , Neocortex/growth & development , Neocortex/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Principal Component Analysis , Species Specificity , Transcriptome , Young Adult
19.
Cereb Cortex ; 23(11): 2620-31, 2013 Nov.
Article in English | MEDLINE | ID: mdl-22933464

ABSTRACT

As a prominent component of the human fetal brain, the structure of the cerebral wall is characterized by its laminar organization which includes the radial glial scaffold during fetal development. Diffusion tensor imaging (DTI) is useful to quantitatively delineate the microstructure of the developing brain and to clearly identify transient fetal layers in the cerebral wall. In our study, the spatio-temporal microstructural changes in the developing human fetal cerebral wall were quantitatively characterized with high-resolution DTI data of postmortem fetal brains from 13 to 21 gestational weeks. Eleven regions of interest for each layer in the entire cerebral wall were included. Distinctive time courses of microstructural changes were revealed for 11 regions of the neocortical plate. A histological analysis was also integrated to elucidate the relationship between DTI fractional anisotropy (FA) and histology. High FA values correlated with organized radial architecture in histological image. Expression levels of 17565 genes were quantified for each of 11 regions of human fetal neocortex from 13 to 21 gestational weeks to identify transcripts showing significant correlation with FA change. These correlations suggest that the heterogeneous and regionally specific microstructural changes of the human neocortex are related to different gene expression patterns.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/embryology , Fetus/anatomy & histology , Cerebral Cortex/metabolism , Diffusion Tensor Imaging , Fetus/metabolism , Gene Expression Profiling , Gestational Age , Humans
20.
Cell ; 149(4): 899-911, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22579290

ABSTRACT

Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here, we show that FMRP regulates translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is widely expressed, NOS1 protein is transiently coexpressed with FMRP during early synaptogenesis in layer- and region-specific pyramidal neurons. These include midfetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Broca's area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases, but not FMRP-deficient mice. Thus, alterations in FMRP posttranscriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS.


Subject(s)
Cerebral Cortex/embryology , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/embryology , Nitric Oxide Synthase Type I/metabolism , Animals , Cerebral Cortex/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/physiopathology , Gene Expression Regulation , Humans , Mice , Mice, Knockout , Neurogenesis , Pyramidal Cells/metabolism , RNA Processing, Post-Transcriptional , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...