Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18072, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872309

ABSTRACT

Long bone fractures are a concern in long-duration exploration missions (LDEM) where crew autonomy will exceed the current Low Earth Orbit paradigm. Current crew selection assumptions require extensive complete training and competency testing prior to flight for off-nominal situations. Analogue astronauts (n = 6) can be quickly trained to address a single fracture pattern and then competently perform the repair procedure. An easy-to-use external fixation (EZExFix) was employed to repair artificial tibial shaft fractures during an inhabited mission at the Mars Desert Research Station (Utah, USA). Bone repair safety zones were respected (23/24), participants achieved 79.2% repair success, and median completion time was 50.04 min. Just-in-time training in-mission was sufficient to become autonomous without pre-mission medical/surgical/mechanical education, regardless of learning conditions (p > 0.05). Similar techniques could be used in LDEM to increase astronauts' autonomy in traumatic injury treatment and lower skill competency requirements used in crew selection.


Subject(s)
Fractures, Bone , Mars , Space Flight , Humans , Space Flight/methods , Astronauts , Utah
2.
J Clin Med ; 12(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37510879

ABSTRACT

Long bone fractures in hostile environments pose unique challenges due to limited resources, restricted access to healthcare facilities, and absence of surgical expertise. While external fixation has shown promise, the availability of trained surgeons is limited, and the procedure may frighten unexperienced personnel. Therefore, an easy-to-use external fixator (EZExFix) that can be performed by nonsurgeon individuals could provide timely and life-saving treatment in hostile environments; however, its efficacy and accuracy remain to be demonstrated. This study tested the learning curve and surgical performance of nonsurgeon analog astronauts (n = 6) in managing tibial shaft fractures by the EZExFix during a simulated Mars inhabited mission, at the Mars Desert Research Station (Hanksville, UT, USA). The reduction was achievable in the different 3D axis, although rotational reductions were more challenging. Astronauts reached similar bone-to-bone contact compared to the surgical control, indicating potential for successful fracture healing. The learning curve was not significant within the limited timeframe of the study (N = 4 surgeries lasting <1 h), but the performance was similar to surgical control. The results of this study could have important implications for fracture treatment in challenging or hostile conditions on Earth, such as war or natural disaster zones, developing countries, or settings with limited resources.

3.
Acta Astronaut ; 55(10): 829-54, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15806734

ABSTRACT

Aircraft parabolic flights provide repetitively up to 20 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences, to test instrumentation and to train astronauts before a space flight. The European Space Agency (ESA) has organized since 1984 thirty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 360 experiments were successfully conducted during more than 2800 parabolas, representing a cumulated weightlessness time of 15 h 30 m. This paper presents the short duration microgravity research programme of ESA. The experiments conducted during these campaigns are summarized, and the different airplanes used by ESA are shortly presented. The technical capabilities of the Airbus A300 'Zero-G' are addressed. Some Physical Science, Technology and Life Science experiments performed during the last ESA campaigns with the Airbus A300 are presented to show the interest of this unique microgravity research tool to complement, support and prepare orbital microgravity investigations.


Subject(s)
Astronauts/education , Research , Space Flight , Weightlessness , Aerospace Medicine , Aircraft , Biological Science Disciplines , Europe , Humans , International Agencies , International Cooperation , Materials Testing , Natural Science Disciplines
4.
Acta Astronaut ; 52(7): 581-9, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12575723

ABSTRACT

The measurement of the influence of different gravity levels on the brain allows to explain how humans react to microgravity in space and to predict the adaptation capability of astronauts. Human electroencephalographic (EEG) signals were recorded during low and high gravity phases of three consecutive days of parabolic flights on the Caravelle aircraft in 1991. EEG signals were processed, using the method of correlation dimensions d of chaotic strange attractors. Results show clear differences between the three flights, with a general decrease over time in the attractor dimensions, a measure of the brain response to changing g levels. However, the dimension is not a one-to-one relation with g levels, as additional variations are observed. Two hypotheses are introduced, the "fatigue/stress" and the "g stress" hypotheses corresponding, respectively, to long-term fatigue accumulated over the three flights, and to short-term fatigue in response to change in g levels. The former explains the overall decrease of dimensions, the latter yields additional variations on shorter time scales. As the brain response degrades with time, at least six degraded modes were observed, explained by both short- and long-term fatigue.


Subject(s)
Brain/physiology , Electroencephalography/statistics & numerical data , Hypergravity , Nonlinear Dynamics , Space Flight , Weightlessness , Adaptation, Physiological , Adult , Fatigue/physiopathology , Gravitation , Humans , Male , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL