Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37177035

ABSTRACT

The results of experimental studies of ohmic conductivity degradation in the ensembles of nanostructured anatase bridges under a long-term effect of direct current are presented. Stochastic sets of partially conducting inter-electrode bridges consisting of close-packed anatase nanoparticles were formed by means of the seeding particles from drying aqueous suspensions on the surfaces of silica substrates with interdigital platinum electrodes. Multiple-run experiments conducted at room temperature have shown that ohmic conductivity degradation in these systems is irreversible. It is presumably due to the accumulated capture of conduction electrons by deep traps in anatase nanoparticles. The scaling analysis of voltage drops across the samples at the final stage of degradation gives a critical exponent for ohmic conductivity as ≈1.597. This value satisfactorily agrees with the reported model data for percolation systems. At an early stage of degradation, the spectral density of conduction current fluctuations observed within the frequency range of 0.01-1 Hz decreases approximately as 1/ω, while near the percolation threshold, the decreasing trend changes to ≈1/ω2. This transition is interpreted in terms of the increasing contribution of blockages and subsequent avalanche-like breakdowns of part of the local conduction channels in the bridges into electron transport near the percolation threshold.

2.
Sensors (Basel) ; 24(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38202899

ABSTRACT

MXenes are two-dimensional (2D) materials with a great potential for sensor applications due to their high aspect ratio and fully functionalized surface that can be tuned for specific gas adsorption. Here, we demonstrate that the Nb2CTz-based sensor exhibits high performance towards alcohol vapors at temperatures up to 300-350 °C, with the best sensitivity towards ethanol. We attribute the observed remarkable chemiresistive effect of this material to the formation of quasi-2D Nb2O5 sheets as the result of the oxidation of Nb-based MXenes. These findings are supported by synchrotron X-ray photoelectron spectroscopy studies together with X-ray diffraction and electron microscopy observations. For analyte selectivity, we employ a multisensor approach where the gas recognition is achieved by linear discriminant analysis of the vector response of the on-chip sensor array. The reported protocol demonstrates that MXene layers are efficient precursors for the derivation of 2D oxide architectures, which are suitable for developing gas sensors and sensor arrays.

3.
Sensors (Basel) ; 22(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36560185

ABSTRACT

The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS3) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS3 nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1-100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 °C, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 °C reduces both the sensitivity and selectivity of the sensor array.


Subject(s)
2-Propanol , Nanotubes, Carbon , United States , Adsorption , Benzene , Electron Transport
4.
Adv Mater ; 33(52): e2104878, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34601739

ABSTRACT

2D transition metal carbides and nitrides (MXenes) open up novel opportunities in gas sensing with high sensitivity at room temperature. Herein, 2D Mo2 CTx flakes with high aspect ratio are successfully synthesized. The chemiresistive effect in a sub-µm MXene multilayer for different organic vapors and humidity at 101 -104  ppm in dry air is studied. Reasonably, the low-noise resistance signal allows the detection of H2 O down to 10 ppm. Moreover, humidity suppresses the response of Mo2 CTx to organic analytes due to the blocking of adsorption active sites. By measuring the impedance of MXene layers as a function of ac frequency in the 10-2 -106  Hz range, it is shown that operation principle of the sensor is dominated by resistance change rather than capacitance variations. The sensor transfer function allows to conclude that the Mo2 CTx chemiresistance is mainly originating from electron transport through interflake potential barriers with heights up to 0.2 eV. Density functional theory calculations, elucidating the Mo2 C surface interaction with organic analytes and H2 O, explain the experimental data as an energy shift of the density of states under the analyte's adsorption which induces increasing electrical resistance.

5.
ACS Appl Mater Interfaces ; 12(50): 56135-56150, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33270411

ABSTRACT

Information about the surrounding atmosphere at a real timescale significantly relies on available gas sensors to be efficiently combined into multisensor arrays as electronic olfaction units. However, the array's performance is challenged by the ability to provide orthogonal responses from the employed sensors at a reasonable cost. This issue becomes more demanded when the arrays are designed under an on-chip paradigm to meet a number of emerging calls either in the internet-of-things industry or in situ noninvasive diagnostics of human breath, to name a few, for small-sized low-powered detectors. The recent advances in additive manufacturing provide a solid top-down background to develop such chip-based gas-analytical systems under low-cost technology protocols. Here, we employ hydrolytically active heteroligand complexes of metals as ink components for microplotter patterning a multioxide combinatorial library of chemiresistive type at a single chip equipped with multiple electrodes. To primarily test the performance of such a multisensor array, various semiconducting oxides of the p- and n-conductance origins based on pristine and mixed nanocrystalline MnOx, TiO2, ZrO2, CeO2, ZnO, Cr2O3, Co3O4, and SnO2 thin films, of up to 70 nm thick, have been printed over hundred µm areas and their micronanostructure and fabrication conditions are thoroughly assessed. The developed multioxide library is shown to deliver at a range of operating temperatures, up to 400 °C, highly sensitive and highly selective vector signals to different, but chemically akin, alcohol vapors (methanol, ethanol, isopropanol, and n-butanol) as examples at low ppm concentrations when mixed with air. The suggested approach provides us a promising way to achieve cost-effective and well-performed electronic olfaction devices matured from the diverse chemiresistive responses of the printed nanocrystalline oxides.

6.
Nanomaterials (Basel) ; 7(12)2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29257073

ABSTRACT

The development of portable gas-sensing units implies a special care of their power efficiency, which is often approached by operation at room temperature. This issue primarily appeals to a choice of suitable materials whose functional properties are sensitive toward gas vapors at these conditions. While the gas sensitivity is nowadays advanced by employing the materials at nano-dimensional domain, the room temperature operation might be targeted via the application of layered solid-state electrolytes, like titanates. Here, we report gas-sensitive properties of potassium titanate whiskers, which are placed over a multielectrode chip by drop casting from suspension to yield a matrix mono-layer of varied density. The material synthesis conditions are straightforward both to get stable single-crystalline quasi-one-dimensional whiskers with a great extent of potassium replacement and to favor the increase of specific surface area of the structures. The whisker layer is found to be sensitive towards volatile organic compounds (ethanol, isopropanol, acetone) in the mixture with air at room temperature. The vapor identification is obtained via processing the vector signal generated by sensor array of the multielectrode chip with the help of pattern recognition algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL
...