Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(24): 11778-11784, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38054731

ABSTRACT

Twisting bilayers of transition metal dichalcogenides gives rise to a moiré potential resulting in flat bands with localized wave functions and enhanced correlation effects. In this work, scanning tunneling microscopy is used to image a WS2 bilayer twisted approximately 3° off the antiparallel alignment. Scanning tunneling spectroscopy reveals localized states in the vicinity of the valence band onset, which is observed to occur first in regions with S-on-S Bernal stacking. In contrast, density functional theory calculations on twisted bilayers that have been relaxed in vacuum predict the highest-lying flat valence band to be localized in regions of AA' stacking. However, agreement with experiment is recovered when the calculations are performed on bilayers in which the atomic displacements from the unrelaxed positions have been reduced, reflecting the influence of the substrate and finite temperature. This demonstrates the delicate interplay of atomic relaxations and the electronic structure of twisted bilayer materials.

2.
ACS Nano ; 17(16): 15883-15892, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37556765

ABSTRACT

The layered transition-metal dichalcogenide material 1T-TaS2 possesses successive phase transitions upon cooling, resulting in strong electron-electron correlation effects and the formation of charge density waves (CDWs). Recently, a dimerized double-layer stacking configuration was shown to form a Peierls-like instability in the electronic structure. To date, no direct evidence for this double-layer stacking configuration using optical techniques has been reported, in particular through Raman spectroscopy. Here, we employ a multiple excitation and polarized Raman spectroscopy to resolve the behavior of phonons and electron-phonon interactions in the commensurate CDW lattice phase of dimerized 1T-TaS2. We observe a distinct behavior from what is predicted for a single layer and probe a richer number of phonon modes that are compatible with the formation of double-layer units (layer dimerization). The multiple-excitation results show a selective coupling of each Raman-active phonon with specific electronic transitions hidden in the optical spectra of 1T-TaS2, suggesting that selectivity in the electron-phonon coupling must also play a role in the CDW order of 1T-TaS2.

3.
Adv Mater ; 35(38): e2207816, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37377064

ABSTRACT

Semiconducting ferroelectric materials with low energy polarization switching offer a platform for next-generation electronics such as ferroelectric field-effect transistors. Recently discovered interfacial ferroelectricity in bilayers of transition metal dichalcogenide films provides an opportunity to combine the potential of semiconducting ferroelectrics with the design flexibility of 2D material devices. Here, local control of ferroelectric domains in a marginally twisted WS2 bilayer is demonstrated with a scanning tunneling microscope at room temperature, and their observed reversible evolution is understood using a string-like model of the domain wall network (DWN). Two characteristic regimes of DWN evolution are identified: (i) elastic bending of partial screw dislocations separating smaller domains with twin stackings due to mutual sliding of monolayers at domain boundaries and (ii) merging of primary domain walls into perfect screw dislocations, which become the seeds for the recovery of the initial domain structure upon reversing electric field. These results open the possibility to achieve full control over atomically thin semiconducting ferroelectric domains using local electric fields, which is a critical step towards their technological use.

4.
ACS Appl Mater Interfaces ; 12(35): 39764-39771, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32658444

ABSTRACT

Graphene has demonstrated great promise for technological use, yet control over material growth and understanding of how material imperfections affect the performance of devices are challenges that hamper the development of applications. In this work, we reveal new insight into the connections between the performance of the graphene devices as environmental sensors and the microscopic details of the interactions at the sensing surface. We monitor changes in the resistance of the chemical-vapor deposition grown graphene devices as exposed to different concentrations of ethanol. We perform thermal surface treatments after the devices are fabricated, use scanning probe microscopy to visualize their effects down to nanometer scale and correlate them with the measured performance of the device as an ethanol sensor. Our observations are compared to theoretical calculations of charge transfers between molecules and the graphene surface. We find that, although often overlooked, the surface cleanliness after device fabrication is responsible for the device performance and reliability. These results further our understanding of the mechanisms of sensing in graphene-based environmental sensors and pave the way to optimizing such devices, especially for their miniaturization, as with decreasing size of the active zone the potential role of contaminants will rise.

5.
J Vis Exp ; (149)2019 07 05.
Article in English | MEDLINE | ID: mdl-31329181

ABSTRACT

In this work we describe a technique for creating new crystals (van der Waals heterostructures) by stacking distinct ultrathin layered 2D materials. We demonstrate not only lateral control but, importantly, also control over the angular alignment of adjacent layers. The core of the technique is represented by a home-built transfer setup which allows the user to control the position of the individual crystals involved in the transfer. This is achieved with sub-micrometer (translational) and sub-degree (angular) precision. Prior to stacking them together, the isolated crystals are individually manipulated by custom-designed moving stages that are controlled by a programmed software interface. Moreover, since the entire transfer setup is computer controlled, the user can remotely create precise heterostructures without coming into direct contact with the transfer setup, labeling this technique as "hands-free". In addition to presenting the transfer set-up, we also describe two techniques for preparing the crystals that are subsequently stacked.


Subject(s)
Nanostructures/chemistry , Nanotechnology/methods , Crystallization
SELECTION OF CITATIONS
SEARCH DETAIL
...