Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5018, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596328

ABSTRACT

Understanding the interplay between the inherent disorder and the correlated fluctuating-spin ground state is a key element in the search for quantum spin liquids. H3LiIr2O6 is considered to be a spin liquid that is proximate to the Kitaev-limit quantum spin liquid. Its ground state shows no magnetic order or spin freezing as expected for the spin liquid state. However, hydrogen zero-point motion and stacking faults are known to be present. The resulting bond disorder has been invoked to explain the existence of unexpected low-energy spin excitations, although data interpretation remains challenging. Here, we use resonant X-ray spectroscopies to map the collective excitations in H3LiIr2O6 and characterize its magnetic state. In the low-temperature correlated state, we reveal a broad bandwidth of magnetic excitations. The central energy and the high-energy tail of the continuum are consistent with expectations for dominant ferromagnetic Kitaev interactions between dynamically fluctuating spins. Furthermore, the absence of a momentum dependence to these excitations are consistent with disorder-induced broken translational invariance. Our low-energy data and the energy and width of the crystal field excitations support an interpretation of H3LiIr2O6 as a disordered topological spin liquid in close proximity to bond-disordered versions of the Kitaev quantum spin liquid.

2.
Nat Phys ; 15(1)2018.
Article in English | MEDLINE | ID: mdl-38840670

ABSTRACT

Conventional crystalline magnets are characterized by symmetry breaking and normal modes of excitation called magnons, with quantized angular momentum ℏ. Neutron scattering correspondingly features extra magnetic Bragg diffraction at low temperatures and dispersive inelastic scattering associated with single magnon creation and annihilation. Exceptions are anticipated in so-called quantum spin liquids, as exemplified by the one-dimensional spin-1/2 chain, which has no magnetic order and where magnons accordingly fractionalize into spinons with angular momentum ℏ/2. This is spectacularly revealed by a continuum of inelastic neutron scattering associated with two-spinon processes. Here, we report evidence for these key features of a quantum spin liquid in the three-dimensional antiferromagnet NaCaNi2F7. We show that despite the complication of random Na1+-Ca2+ charge disorder, NaCaNi2F7 is an almost ideal realization of the spin-1 antiferromagnetic Heisenberg model on a pyrochlore lattice. Magnetic Bragg diffraction is absent and 90% of the neutron spectral weight forms a continuum of magnetic scattering with low-energy pinch points, indicating NaCaNi2F7 is in a Coulomb-like phase. Our results demonstrate that disorder can act to freeze only the lowest-energy magnetic degrees of freedom; at higher energies, a magnetic excitation continuum characteristic of fractionalized excitations persists.

3.
J Phys Condens Matter ; 29(4): 045801, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27875333

ABSTRACT

The crystal structures and magnetic properties of three previously unreported A2B2F7 pyrochlore materials, NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7 are presented. In these compounds, either S = 2Fe2+ or S = 5/2Mn2+ is on the B site, while nonmagnetic Na and Ca (Na and Sr) are disordered on the A site. The materials, which were grown as crystals via the floating zone method, display high effective magnetic moments and large Curie-Weiss thetas. Despite these characteristics, no ordering transition is detected. However, freezing of the magnetic spins, characterized by peaks in the susceptibility or specific heat, is observed at very low temperatures. The empirical frustration index, f = -θ CW/T f, for the materials are 36 (NaSrMn2F7), 27 (NaSrFe2F7), and 19 (NaCaFe2F7). AC susceptibility, DC susceptibility, and heat capacity measurements are used to characterize the observed spin glass behavior. The results suggest that the compounds are frustrated pyrochlore antiferromagnets with weak bond disorder. The magnetic phenomena that these fluoride pyrochlores exhibit, in addition to their availability as relatively large single crystals, make them promising candidates for the study of geometric magnetic frustration.

SELECTION OF CITATIONS
SEARCH DETAIL