Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(20): 206401, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829092

ABSTRACT

Coexisting orders are key features of strongly correlated materials and underlie many intriguing phenomena from unconventional superconductivity to topological orders. Here, we report the coexistence of two interacting charge-density-wave (CDW) orders in EuTe_{4}, a layered crystal that has drawn considerable attention owing to its anomalous thermal hysteresis and a semiconducting CDW state despite the absence of perfect Fermi surface nesting. By accessing unoccupied conduction bands with time- and angle-resolved photoemission measurements, we find that monolayers and bilayers of Te in the unit cell host different CDWs that are associated with distinct energy gaps. The two gaps display dichotomous evolutions following photoexcitation, where the larger bilayer CDW gap exhibits less renormalization and faster recovery. Surprisingly, the CDW in the Te monolayer displays an additional momentum-dependent gap renormalization that cannot be captured by density-functional theory calculations. This phenomenon is attributed to interlayer interactions between the two CDW orders, which account for the semiconducting nature of the equilibrium state. Our findings not only offer microscopic insights into the correlated ground state of EuTe_{4} but also provide a general nonequilibrium approach to understand coexisting, layer-dependent orders in a complex system.

2.
Nano Lett ; 23(3): 772-778, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36662578

ABSTRACT

Topological materials present unconventional electronic properties that make them attractive for both basic science and next-generation technological applications. The majority of currently known topological materials have been discovered using methods that involve symmetry-based analysis of the quantum wave function. Here we use machine learning to develop a simple-to-use heuristic chemical rule that diagnoses with a high accuracy whether a material is topological using only its chemical formula. This heuristic rule is based on a notion that we term topogivity, a machine-learned numerical value for each element that loosely captures its tendency to form topological materials. We next implement a high-throughput procedure for discovering topological materials based on the heuristic topogivity-rule prediction followed by ab initio validation. This way, we discover new topological materials that are not diagnosable using symmetry indicators, including several that may be promising for experimental observation.

3.
Phys Rev Lett ; 128(3): 036401, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35119886

ABSTRACT

Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe_{4}. By combining transport, photoemission, diffraction, and x-ray absorption measurements, we observe that the hysteresis loop has a temperature width of more than 400 K, setting a record among crystalline solids. The transition has an origin distinct from known mechanisms, lying entirely within the incommensurate charge density wave (CDW) phase of EuTe_{4} with no change in the CDW modulation periodicity. We interpret the hysteresis as an unusual switching of the relative CDW phases in different layers, a phenomenon unique to quasi-2D compounds that is not present in either purely 2D or strongly coupled 3D systems. Our findings challenge the established theories on metastable states in density wave systems, pushing the boundary of understanding hysteretic transitions in a broken-symmetry state.

4.
Nat Commun ; 13(1): 98, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013277

ABSTRACT

In van der Waals (vdW) materials, strong coupling between different degrees of freedom can hybridize elementary excitations into bound states with mixed character1-3. Correctly identifying the nature and composition of these bound states is key to understanding their ground state properties and excitation spectra4,5. Here, we use ultrafast spectroscopy to reveal bound states of d-orbitals and phonons in 2D vdW antiferromagnet NiPS3. These bound states manifest themselves through equally spaced phonon replicas in frequency domain. These states are optically dark above the Néel temperature and become accessible with magnetic order. By launching this phonon and spectrally tracking its amplitude, we establish the electronic origin of bound states as localized d-d excitations. Our data directly yield electron-phonon coupling strength which exceeds the highest known value in 2D systems6. These results demonstrate NiPS3 as a platform to study strong interactions between spins, orbitals and lattice, and open pathways to coherent control of 2D magnets.

5.
Nat Commun ; 12(1): 4837, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34376692

ABSTRACT

Collective excitations of bound electron-hole pairs-known as excitons-are ubiquitous in condensed matter, emerging in systems as diverse as band semiconductors, molecular crystals, and proteins. Recently, their existence in strongly correlated electron materials has attracted increasing interest due to the excitons' unique coupling to spin and orbital degrees of freedom. The non-equilibrium driving of such dressed quasiparticles offers a promising platform for realizing unconventional many-body phenomena and phases beyond thermodynamic equilibrium. Here, we achieve this in the van der Waals correlated insulator NiPS3 by photoexciting its newly discovered spin-orbit-entangled excitons that arise from Zhang-Rice states. By monitoring the time evolution of the terahertz conductivity, we observe the coexistence of itinerant carriers produced by exciton dissociation and a long-wavelength antiferromagnetic magnon that coherently precesses in time. These results demonstrate the emergence of a transient metallic state that preserves long-range antiferromagnetism, a phase that cannot be reached by simply tuning the temperature. More broadly, our findings open an avenue toward the exciton-mediated optical manipulation of magnetism.

6.
Nano Lett ; 21(17): 7419-7425, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34314183

ABSTRACT

Many-body localization (MBL) has attracted significant attention because of its immunity to thermalization, role in logarithmic entanglement entropy growth, and opportunities to reach exotic quantum orders. However, experimental realization of MBL in solid-state systems has remained challenging. Here, we report evidence of a possible phonon MBL phase in disordered GaAs/AlAs superlattices. Through grazing-incidence inelastic X-ray scattering, we observe a strong deviation of the phonon population from equilibrium in samples doped with ErAs nanodots at low temperature, signaling a departure from thermalization. This behavior occurs within finite phonon energy and wavevector windows, suggesting a localization-thermalization crossover. We support our observation by proposing a theoretical model for the effective phonon Hamiltonian in disordered superlattices, and showing that it can be mapped exactly to a disordered 1D Bose-Hubbard model with a known MBL phase. Our work provides momentum-resolved experimental evidence of phonon localization, extending the scope of MBL to disordered solid-state systems.


Subject(s)
Models, Theoretical , Phonons
7.
Nat Commun ; 11(1): 4004, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32778669

ABSTRACT

Electronic flat bands in momentum space, arising from strong localization of electrons in real space, are an ideal stage to realize strongly-correlated phenomena. Theoretically, the flat bands can naturally arise in certain geometrically frustrated lattices, often with nontrivial topology if combined with spin-orbit coupling. Here, we report the observation of topological flat bands in frustrated kagome metal CoSn, using angle-resolved photoemission spectroscopy and band structure calculations. Throughout the entire Brillouin zone, the bandwidth of the flat band is suppressed by an order of magnitude compared to the Dirac bands originating from the same orbitals. The frustration-driven nature of the flat band is directly confirmed by the chiral d-orbital texture of the corresponding real-space Wannier functions. Spin-orbit coupling opens a large gap of 80 meV at the quadratic touching point between the Dirac and flat bands, endowing a nonzero Z2 invariant to the flat band. These findings demonstrate that kagome-derived flat bands are a promising platform for novel emergent phases of matter at the confluence of strong correlation and topology.

8.
Sci Adv ; 6(18): eaaz8367, 2020 May.
Article in English | MEDLINE | ID: mdl-32426480

ABSTRACT

Topological superconductors are exotic phases of matter featuring robust surface states that could be leveraged for topological quantum computation. A useful guiding principle for the search of topological superconductors is to relate the topological invariants with the behavior of the pairing order parameter on the normal-state Fermi surfaces. The existing formulas, however, become inadequate for the prediction of the recently proposed classes of topological crystalline superconductors. In this work, we advance the theory of symmetry indicators for topological (crystalline) superconductors to cover all space groups. Our main result is the exhaustive computation of the indicator groups for superconductors under a variety of symmetry settings. We further illustrate the power of this approach by analyzing fourfold symmetric superconductors with or without inversion symmetry and show that the indicators can diagnose topological superconductors with surface states of different dimensionalities or dictate gaplessness in the bulk excitation spectrum.

9.
J Phys Condens Matter ; 32(26): 263001, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32106094

ABSTRACT

Topological materials are quantum materials with nontrivial ground-state entanglement that are irremovable so long as certain rules, like invariance under symmetries and the existence of an energy gap, are respected. They showcase unconventional properties like robust anomalous surface states and quantized physical responses. The intense research efforts in understanding topological materials result in a modernized perspective on the decades-old theory of symmetry representations in electronic band structures, and inspire the development of general theories that enable the efficient diagnosis of topological materials using only symmetry data. One example is the theory of symmetry indicators of band topology, which is the focus of this topical review. We will aim at providing a pedagogical introduction to the key concepts and constructions in the theory, alongside with a brief summary of the latest development.

10.
Sci Adv ; 5(3): eaau8725, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30873432

ABSTRACT

Crystalline symmetries play an important role in the classification of band structures, and their richness leads to various topological crystalline phases. On the basis of our recently developed method for the efficient discovery of topological materials using symmetry indicators, we explore topological materials in five space groups ( S G s), which are diagnosed by large-order symmetry indicators (ℤ8 and ℤ12) and support the coexistence of several kinds of gapless boundary states in a single compound. We predict many candidate materials; some representatives include Pt3Ge ( S G 140 ), graphite ( S G 194 ), XPt3 ( S G 221 , X = Sn, Pb), Au4Ti ( S G 87 ), and Ti2Sn ( S G 194 ). As by-products, we also find that AgXF3 ( S G 140 , X = Rb, Cs) and AgAsX ( S G 194 , X = Sr, Ba) are good Dirac semimetals with clean Fermi surfaces. The proposed materials provide a good platform for studying the novel properties emerging from the interplay between different types of boundary states.

11.
Nature ; 566(7745): 486-489, 2019 02.
Article in English | MEDLINE | ID: mdl-30814709

ABSTRACT

Over the past decade, topological materials-in which the topology of electron bands in the bulk material leads to robust, unconventional surface states and electromagnetism-have attracted much attention. Although several theoretically proposed topological materials have been experimentally confirmed, extensive experimental exploration of topological properties, as well as applications in realistic devices, has been restricted by the lack of topological materials in which interference from trivial Fermi surface states is minimized. Here we apply our method of symmetry indicators to all suitable nonmagnetic compounds in all 230 possible space groups. A database search reveals thousands of candidate topological materials, of which we highlight 241 topological insulators and 142 topological crystalline insulators that have either noticeable full bandgaps or a considerable direct gap together with small trivial Fermi pockets. Furthermore, we list 692 topological semimetals that have band crossing points located near the Fermi level. These candidate materials open up the possibility of using topological materials in next-generation electronic devices.

12.
Phys Rev Lett ; 121(12): 126402, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30296141

ABSTRACT

Topological phases, such as Chern insulators, are defined in terms of additive indices that are stable against the addition of trivial degrees of freedom. Such topology presents an obstruction to any Wannier representation, namely, the representation of the electronic states in terms of symmetric, exponentially localized Wannier functions. Here, we address the converse question: Do obstructions to Wannier representation imply stable band topology? We answer this in the negative, pointing out that some bands can also display a distinct type of "fragile topology." Bands with fragile topology do not admit any Wannier representation by themselves, but such a representation becomes possible once certain additional trivial degrees of freedom are supplied. We construct a physical model of fragile topology on the honeycomb lattice that also helps resolve a recent puzzle in band theory. This model provides a counterexample to the assumption that splitting of an "elementary band representation" introduced in [B. Bradlyn et al., Topological quantum chemistry, Nature (London) 547, 298 (2017)] leads to bands that are individually topological. Instead, half of the split bands of our model realize a trivial band with exponentially localized symmetric Wannier functions, whereas the second half possess fragile topology. Our work highlights an important and previously overlooked connection between band structure and Wannier functions, and is expected to have far-reaching consequences given the central role played by Wannier functions in the modeling of real materials.

13.
Sci Adv ; 4(8): eaat8685, 2018 08.
Article in English | MEDLINE | ID: mdl-30083612

ABSTRACT

The properties of electrons in magnetically ordered crystals are of interest both from the viewpoint of realizing novel topological phases, such as magnetic Weyl semimetals, and from the application perspective of creating energy-efficient memories. A systematic study of symmetry and topology in magnetic materials has been challenging given that there are 1651 magnetic space groups (MSGs). By using an efficient representation of allowed band structures, we obtain a systematic description of several basic properties of free electrons in all MSGs in three dimensions, as well as in the 528 magnetic layer groups relevant to two-dimensional magnetic materials. We compute constraints on electron fillings and band connectivity compatible with insulating behavior. In addition, by contrasting with atomic insulators, we identify band topology entailed by the symmetry transformation of bands, as determined by the MSG alone. We provide an application of our results to identifying topological semimetals arising in periodic arrangements of hedgehog-like magnetic textures.

14.
Nat Commun ; 8(1): 931, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29018202

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this article.

15.
Nat Commun ; 8(1): 50, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28667305

ABSTRACT

The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.


Subject(s)
Electrons
16.
Phys Rev Lett ; 118(15): 150504, 2017 Apr 14.
Article in English | MEDLINE | ID: mdl-28452518

ABSTRACT

Single-shot readout of qubits is required for scalable quantum computing. Nuclear spins are superb quantum memories due to their long coherence time, but are difficult to be read out in a single shot due to their weak interaction with probes. Here we demonstrate single-shot readout of a weakly coupled ^{13}C nuclear spin at room temperature, which is unresolvable in traditional protocols. States of the weakly coupled nuclear spin are trapped and read out projectively by sequential weak measurements, which are implemented by dynamical decoupling pulses. A nuclear spin coupled to the nitrogen-vacancy (NV) center with strength 330 kHz is read out in 200 ms with a fidelity of 95.5%. This work provides a general protocol for single-shot readout of weakly coupled qubits at room temperature and therefore largely extends the range of physical systems for scalable quantum computing.

17.
Phys Rev Lett ; 119(12): 127202, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29341651

ABSTRACT

The Lieb-Schultz-Mattis (LSM) theorem and its extensions forbid trivial phases from arising in certain quantum magnets. Constraining infrared behavior with the ultraviolet data encoded in the microscopic lattice of spins, these theorems tie the absence of spontaneous symmetry breaking to the emergence of exotic phases like quantum spin liquids. In this work, we take a new topological perspective on these theorems, by arguing they originate from an obstruction to "trivializing" the lattice under smooth, symmetric deformations, which we call the "lattice homotopy problem." We conjecture that all LSM-like theorems for quantum magnets (many previously unknown) can be understood from lattice homotopy, which automatically incorporates the full spatial symmetry group of the lattice, including all its point-group symmetries. One consequence is that any spin-symmetric magnet with a half-integer moment on a site with even-order rotational symmetry must be a spin liquid. To substantiate the claim, we prove the conjecture in two dimensions for some physically relevant settings.

18.
Phys Rev Lett ; 117(9): 096404, 2016 Aug 26.
Article in English | MEDLINE | ID: mdl-27610868

ABSTRACT

Nonsymmorphic symmetries like screws and glides produce electron band touchings, obstructing the formation of a band insulator and leading, instead, to metals or nodal semimetals even when the number of electrons in the unit cell is an even integer. Here, we calculate the electron fillings compatible with being a band insulator for all 230 space groups, for noninteracting electrons with time-reversal symmetry. Our bounds are tight-that is, we can rigorously eliminate band insulators at any forbidden filling and produce explicit models for all allowed fillings-and stronger than those recently established for interacting systems. These results provide simple criteria that should help guide the search for topological semimetals and, also, have implications for both the nature and stability of the resulting nodal Fermi surfaces.

19.
Sci Adv ; 2(4): e1501782, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27152352

ABSTRACT

An early triumph of quantum mechanics was the explanation of metallic and insulating behavior based on the filling of electronic bands. A complementary, classical picture of insulators depicts electrons as occupying localized and symmetric Wannier orbitals that resemble atomic orbitals. We report the theoretical discovery of band insulators for which electron filling forbids such an atomic description. We refer to them as filling-enforced quantum band insulators (feQBIs) because their wave functions are associated with an essential degree of quantum entanglement. Like topological insulators, which also do not admit an atomic description, feQBIs need spin-orbit coupling for their realization. However, they do not necessarily support gapless surface states. Instead, the band topology is reflected in the insulating behavior at an unconventional filling. We present tight binding models of feQBIs and show that they only occur in certain nonsymmorphic, body-centered cubic crystals.


Subject(s)
Electrons , Models, Theoretical , Quantum Theory , Crystallization
20.
Proc Natl Acad Sci U S A ; 112(47): 14551-6, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26604304

ABSTRACT

We determine conditions on the filling of electrons in a crystalline lattice to obtain the equivalent of a band insulator--a gapped insulator with neither symmetry breaking nor fractionalized excitations. We allow for strong interactions, which precludes a free particle description. Previous approaches that extend the Lieb-Schultz-Mattis argument invoked spin conservation in an essential way and cannot be applied to the physically interesting case of spin-orbit coupled systems. Here we introduce two approaches: The first one is an entanglement-based scheme, and the second one studies the system on an appropriate flat "Bieberbach" manifold to obtain the filling conditions for all 230 space groups. These approaches assume only time reversal rather than spin rotation invariance. The results depend crucially on whether the crystal symmetry is symmorphic. Our results clarify when one may infer the existence of an exotic ground state based on the absence of order, and we point out applications to experimentally realized materials. Extensions to new situations involving purely spin models are also mentioned.

SELECTION OF CITATIONS
SEARCH DETAIL
...