Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
J Plant Physiol ; 295: 154222, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484685

ABSTRACT

Plant hormones such as ethylene (ET) and salicylic acid (SA) have an elementary role in the regulation of ER stress and unfolded protein response (UPR) in plants via modulating defence responses or inducing oxidative stress. Chloroplasts can be sources and targets of reactive oxygen species (ROS) that affect photosynthetic efficiency, which has not been investigated under tunicamycin (Tm)-induced ER stress. In this study, the direct and indirect effects of Tm on chloroplastic ROS production were first investigated in leaves of wild-type tomato (Solanum lycopersicum L.) plants. Secondly changes in activities of photosystem II and I were analysed under Tm exposure and after application of the chemical chaperone 4-phenylbutyrate (PBA) in different genotypes, focusing on the regulatory role of SA and ET Tm treatments significantly but indirectly induced ROS production in tomato leaves and in parallel it decreased the effective quantum yield of PSII [Y(II)] and PSI [Y(I)], as well as the photochemical quenching coefficient (qP) and the quantum yield of non-photochemical energy dissipation in PSI due to acceptor-side limitation [Y(NA)]. At the same time, Tm increased non-photochemical quenching (NPQ) and cyclic electron flow (CEF) in tomato leaves after 24 h. However, the photosynthetic activity of the SA hydroxylase-overexpressing NahG tomato plants was more severely affected by Tm as compared to wild-type and ET-insensitive Never ripe (Nr) plants. These results suggest the protective role of SA in the regulation of photosynthetic activity contributing to UPR and the survival of plants under ER stress. Interestingly, the activation of photoprotective mechanisms by NPQ was independent of SA but dependent on active ET signalling under ER stress, whereas CEF was reduced by ET due to its higher ratio in Nr plants.


Subject(s)
Solanum lycopersicum , Tunicamycin/pharmacology , Tunicamycin/metabolism , Reactive Oxygen Species/metabolism , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Photosynthesis/physiology , Ethylenes/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Light
2.
Plant Cell Rep ; 43(1): 2, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108938

ABSTRACT

Fusaric acid (FA) is one of the most harmful phytotoxins produced in various plant-pathogen interactions. Fusarium species produce FA as a secondary metabolite, which can infect many agronomic crops at all stages of development from seed to fruit, and FA production can further compromise plant survival because of its phytotoxic effects. FA exposure in plant species adversely affects plant growth, development and crop yield. FA exposure in plants leads to the generation of reactive oxygen species (ROS), which cause cellular damage and ultimately cell death. Therefore, FA-induced ROS accumulation in plants has been a topic of interest for many researchers to understand the plant-pathogen interactions and plant defence responses. In this study, we reviewed the FA-mediated oxidative stress and ROS-induced defence responses of antioxidants, as well as hormonal signalling in plants. The effects of FA phytotoxicity on lipid peroxidation, physiological changes and ultrastructural changes at cellular and subcellular levels were reported. Additionally, DNA damage, cell death and adverse effects on photosynthesis have been explained. Some possible approaches to overcome the harmful effects of FA in plants were also discussed. It is concluded that FA-induced ROS affect the enzymatic and non-enzymatic antioxidant system regulated by phytohormones. The effects of FA are also associated with other photosynthetic, ultrastructural and genotoxic modifications in plants.


Subject(s)
Fusaric Acid , Oxidative Stress , Reactive Oxygen Species , Antioxidants , Seeds
3.
Plant Physiol Biochem ; 205: 108192, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995576

ABSTRACT

The endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are highly dependent on phytohormones such as salicylic acid (SA). In this study, the effect of SA supplementation and the lack of endogenous SA on glutathione metabolism were investigated under ER stress in wild-type (WT) and transgenic SA-deficient NahG tomato (Solanum lycopersicum L.) plants. The expression of the UPR marker gene SlBiP was dependent on SA levels and remained lower in NahG plants. Exogenous application of the chemical chaperone 4-phenylbutyrate (PBA) also reduced tunicamycin (Tm)-induced SlBiP transcript accumulation. At the same time, Tm-induced superoxide and hydrogen peroxide production were independent of SA, whereas the accumulation of reduced form of glutathione (GSH) and the oxidised glutathione (GSSG) was regulated by SA. Tm increased the activity of glutathione reductase (GR; EC 1.6.4.2) independently of SA, but the activities of dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione S-transferases (GSTs; EC 2.5.1.18) were increased by Tm in a SA-dependent manner. SlGR2, SlGGT and SlGSTT2 expression was activated in a SA-dependent way upon Tm. Although expression of SlGSH1, SlGSTF2, SlGSTU5 and SlGTT3 did not change upon Tm treatment in leaves, SlGR1 and SlDHAR2 transcription decreased. PBA significantly increased the expression of SlGR1, SlGR2, SlGSTT2, and SlGSTT3, which contributed to the amelioration of Tm-induced ER stress based on the changes in lipid peroxidation and cell viability. Malondialdehyde accumulation and electrolyte leakage were significantly higher in WT as compared to NahG tomato leaves under ER stress, further confirming the key role of SA in this process.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Glutathione/metabolism , Oxidative Stress , Glutathione Disulfide/metabolism , Glutathione Reductase/metabolism , Endoplasmic Reticulum Stress
4.
Antioxidants (Basel) ; 12(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37627609

ABSTRACT

Polyamine (PA) catabolism mediated by amine oxidases is an important process involved in fine-tuning PA homeostasis and related mechanisms during salt stress. The significance of these amine oxidases in short-term responses to salt stress is, however, not well understood. In the present study, the effects of L-aminoguanidine (AG) on tomato roots treated with short-term salt stress induced by NaCl were studied. AG is usually used as a copper amine oxidase (CuAO or DAO) inhibitor. In our study, other alterations of PA catabolism, such as reduced polyamine oxidase (PAO), were also observed in AG-treated plants. Salt stress led to an increase in the reactive oxygen and nitrogen species in tomato root apices, evidenced by in situ fluorescent staining and an increase in free PA levels. Such alterations were alleviated by AG treatment, showing the possible antioxidant effect of AG in tomato roots exposed to salt stress. PA catabolic enzyme activities decreased, while the imbalance of hydrogen peroxide (H2O2), nitric oxide (NO), and hydrogen sulfide (H2S) concentrations displayed a dependence on stress intensity. These changes suggest that AG-mediated inhibition could dramatically rearrange PA catabolism and related reactive species backgrounds, especially the NO-related mechanisms. More studies are, however, needed to decipher the precise mode of action of AG in plants exposed to stress treatments.

6.
J Plant Physiol ; 287: 154041, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37339571

ABSTRACT

Plant defence responses induced by the bacterial elicitor flg22 are highly dependent on phytohormones, including gaseous ethylene (ET). While the regulatory role of ET in local defence responses to flg22 exposure has been demonstrated, its contribution to the induction of systemic responses is not clearly understood. For this consideration, we examined the effects of different ET modulators on the flg22-induced local and systemic defence progression. In our experiments, ET biosynthesis inhibitor aminoethoxyvinyl glycine (AVG) or ET receptor blocker silver thiosulphate (STS) were applied 1 h before flg22 treatments and 1 h later the rapid local and systemic responses were detected in the leaves of intact tomato plants (Solanum lycopersicum L.). Based on our results, AVG not only diminished the flg22-induced ET accumulation locally, but also in the younger leaves confirming the role of ET in the whole-plant expanding defence progression. This increase in ET emission was accompanied by increased local expression of SlACO1, which was reduced by AVG and STS. Local ET biosynthesis upon flg22 treatment was shown to positively regulate local and systemic superoxide (O2.-) and hydrogen peroxide (H2O2) production, which in turn could contribute to ET accumulation in younger leaves. Confirming the role of ET in flg22-induced rapid defence responses, application of AVG reduced local and systemic ET, O2.- and H2O2 production, whereas STS reduced it primarily in the younger leaves. Interestingly, in addition to flg22, AVG and STS induced stomatal closure alone at whole-plant level, however in the case of combined treatments together with flg22 both ET modulators reduced the rate of stomatal closure in the older- and younger leaves as well. These results demonstrate that both local and systemic ET production in sufficient amounts and active ET signalling are essential for the development of flg22-induced rapid local and systemic defence responses.


Subject(s)
Solanum lycopersicum , Hydrogen Peroxide/metabolism , Ethylenes/metabolism , Plant Growth Regulators/metabolism
7.
Plant Physiol Biochem ; 196: 841-849, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36870159

ABSTRACT

The mycotoxin fusaric acid (FA) induces rapid oxidative burst leading to cell death in plants. At the same time, plant defence reactions are mediated by several phytohormones for instance ethylene (ET). However, previously conducted studies leave research gaps on how ET plays a regulatory role under mycotoxin exposure. Therefore, this study aims to the time-dependent effects of two FA concentrations (0.1 mM and 1 mM) were explored on the regulation of reactive oxygen species (ROS) in leaves of wild-type (WT) and ET receptor mutant Never ripe (Nr) tomatoes. FA induced superoxide and H2O2 accumulation in both genotypes in a mycotoxin dose- and exposure time-dependent pattern. 1 mM FA activated NADPH oxidase (+34% compared to the control) and RBOH1 transcript levels in WT leaves. However, superoxide production was significantly higher in Nr with 62% which could contribute to higher lipid peroxidation in this genotype. In parallel, the antioxidative defence mechanisms were also activated. Both peroxidase and superoxide dismutase activities were lower in Nr but ascorbate peroxidase showed one-fold higher activity under 1 mM FA stress than in WT leaves. Interestingly, catalase (CAT) activity decreased upon FA in a time- and concentration-dependent manner and the encoding CAT genes were also downregulated, especially in Nr leaves at 20%. Ascorbate level was decreased and glutathione remained lower in Nr than WT plants under FA exposure. Conclusively, Nr genotype showed more sensitivity to FA-induced ROS suggesting that ET serves defence reactions of plants by activating several enzymatic and non-enzymatic antioxidants to detoxify excess ROS accumulation.


Subject(s)
Solanum lycopersicum , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Fusaric Acid/pharmacology , Fusaric Acid/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Antioxidants/metabolism , Plants/metabolism , Ascorbate Peroxidases/metabolism , Ethylenes/metabolism , Plant Leaves/metabolism , Superoxide Dismutase/metabolism , Catalase/metabolism
8.
J Plant Physiol ; 277: 153793, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35995003

ABSTRACT

Salt stress-induced ethylene (ET) can influence the defence responses of plants that can be dependent on plant organs. In this work, the effects of salt stress evoked by 75 mM NaCl treatment were measured in fruits of wild-type (WT) and ET receptor-mutant Never ripe (Nr) tomato. Salt stress reduced the weight and size of fruits both in WT and Nr, which proved to be more pronounced in mutants. In addition, significantly higher H2O2 levels and lipid peroxidation were measured after the salt treatment in Nr as compared to the untreated control than in WT. ET regulated the key antioxidant enzymes, especially ascorbate peroxidase (APX), in WT but in the mutant fruits the activity of APX did not change and the superoxide dismutase and catalase activities were downregulated compared to untreated controls after salt treatment contributing to a higher degree of oxidative stress in Nr fruits. The dependency of PA metabolism on the active ET signalling was investigated for the first time in fruits of Nr mutants under salt stress. 75 mM NaCl enhanced the accumulation of spermine in WT fruits, which was not observed in Nr, but levels of putrescine and spermidine were elevated by salt stress in these tissues. Moreover, the catabolism of PAs was much stronger under high salinity in Nr fruits contributing to higher oxidative stress, which was only partially alleviated by the increased total and reduced ascorbate and glutathione pool. We can conclude that ET-mediated signalling plays a crucial role in the regulation of salt-induced oxidative stress and PA levels in tomato fruits at the mature stage.


Subject(s)
Antioxidants , Solanum lycopersicum , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Ethylenes/metabolism , Fruit/metabolism , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Solanum lycopersicum/metabolism , Polyamines/metabolism , Putrescine/metabolism , Salt Stress , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Spermidine/metabolism , Spermine/metabolism , Superoxide Dismutase/metabolism
9.
Plants (Basel) ; 11(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35807622

ABSTRACT

The phytohormone salicylic acid (SA) can influence the polyamine metabolism in plants. Additionally, polyamines (PAs) can regulate the synthesis of SA, providing an exciting interplay between them not only in plant growth and development but also in biotic or abiotic stress conditions. The effect of SA on polyamine metabolism of leaves is well-studied but the root responses are rarely investigated. In this study, tomato roots were used to investigate the effect of short-term exposition of SA in two different concentrations, a sublethal 0.1 mM and a lethal 1 mM. To explore the involvement of SA in regulating PAs in roots, the degradation of PAs was also determined. As both SA and PAs can induce reactive oxygen species (ROS) and nitric oxide (NO) production, the balance of ROS and NO was analyzed in root tips. The results showed that 0.1 mM SA induced the production of higher PAs, spermidine (Spd), and spermine (Spm), while 1 mM SA decreased the PA contents by activating degrading enzymes. Studying the ROS and NO levels in root tips, the ROS production was induced earlier than NO, consistent with all the investigated zones of roots. This study provides evidence for concentration-dependent rapid effects of SA treatments on polyamine metabolism causing an imbalance of ROS-NO in root tips.

10.
Int J Mol Sci ; 23(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35628560

ABSTRACT

Glutathione peroxidases (GPXs) are important antioxidant enzymes in animals. Plants contain GPX-like (GPXL) enzymes, which-in contrast to GPXs-contain cysteine in their active site instead of selenocysteine. Although several studies proved their importance in development and stress responses, their interaction with ethylene (ET) signalling is not known. Our aim was to investigate the involvement of AtGPXL5 in ET biosynthesis and/or signalling using Atgpxl5 mutant and AtGPXL5 cDNA-overexpressing (OX-AtGPXL5) lines. Four-day-old dark-grown Atgpxl5 seedlings had shorter hypocotyls and primary roots, while OX-AtGPXL5 seedlings exhibited a similar phenotype as wild type under normal conditions. Six-week-old OX-AtGPXL5 plants contained less H2O2 and malondialdehyde, but higher polyamine and similar ascorbate- and glutathione contents and redox potential (EGSH) than the Col-0. One-day treatment with the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC) induced the activity of glutathione- and thioredoxin peroxidases and some other ROS-processing enzymes. In the Atgpxl5 mutants, the EGSH became more oxidised; parallelly, it produced more ethylene after the ACC treatment than other genotypes. Although the enhanced ET evolution measured in the Atgpxl5 mutant can be the result of the increased ROS level, the altered expression pattern of ET-related genes both in the Atgpxl5 and OX-AtGPXL5 plants suggests the interplay between AtGPXL5 and ethylene signalling.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Ethylenes/metabolism , Glutathione/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Hydrogen Peroxide/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Reactive Oxygen Species/metabolism
11.
Biocontrol (Dordr) ; 67(2): 249-262, 2022.
Article in English | MEDLINE | ID: mdl-35463117

ABSTRACT

Plant pathogenic fungi are responsible for enormous crop losses worldwide. Overcoming this problem is challenging as these fungi can be highly resistant to approved chemical fungicides. There is thus a need to develop and introduce fundamentally new plant and crop protection strategies for sustainable agricultural production. Highly stable extracellular antifungal proteins (AFPs) and their rationally designed peptide derivatives (PDs) constitute feasible options to meet this challenge. In the present study, their potential for topical application to protect plants and crops as combinatorial biofungicides is supported by the investigation of two Neosartorya (Aspergillus) fischeri AFPs (NFAP and NFAP2) and their γ-core PDs. Previously, the biofungicidal potential of NFAP, its rationally designed γ-core PD (γNFAP-opt), and NFAP2 was reported. Susceptibility tests in the present study extended the in vitro antifungal spectrum of NFAP2 and its γ-core PD (γNFAP2-opt) to Botrytis, Cladosporium, and Fusarium spp. Besides, in vitro additive or indifferent interactions, and synergism were observed when NFAP or NFAP2 was applied in combination with γNFAP-opt. Except for γNFAP2-opt, the investigated proteins and peptides did not show any toxicity to tomato plant leaves. The application of NFAP in combination with γNFAP-opt effectively inhibited conidial germination, biofilm formation, and hyphal extension of the necrotrophic mold Botrytis cinerea on tomato plant leaves. However, the same combination only partially impeded the B. cinerea-mediated decay of tomato fruits, but mitigated the symptoms. Our results highlight the feasibility of using the combination of AFP and PD as biofungicide for the fungal infection control in plants and crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s10526-022-10132-y.

12.
Plant Physiol Biochem ; 181: 1-11, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35421744

ABSTRACT

The unfolded protein response (UPR) plays a significant role in the maintenance of cellular homeostasis under endoplasmic reticulum (ER) stress, which is highly dependent on the regulation of defense-related phytohormones. In this study, the role of ethylene (ET) in ER stress and UPR was investigated in the leaves of intact tomato (Solanum lycopersicum) plants. Exogenous application of the ET precursor 1-aminocyclopropane-1-carboxylic acid not only resulted in higher ET emission from leaves but also increased the expression of the UPR marker gene SlBiP and the transcript levels of the ER stress sensor SlIRE1, as well as the levels of SlbZIP60, after 24 h in tomato leaves. Using ET receptor Never ripe (Nr) mutants, a significant role of ET in tunicamycin (Tm)-induced ER stress sensing and signaling was confirmed based on the changes in the expression levels of SlIRE1b and SlBiP. Furthermore, the analysis of other defense-related phytohormones showed that the Tm-induced ET can affect positively the levels of and response to salicylic acid. Additionally, it was found that nitric oxide production and lipid peroxidation, as well as the electrolyte leakage induced by Tm, is regulated by ET, whereas the levels of H2O2 and proteolytic activity seemed to be independent of ET under ER stress in the leaves of tomato plants.


Subject(s)
Solanum lycopersicum , Ethylenes/metabolism , Hydrogen Peroxide/metabolism , Solanum lycopersicum/metabolism , Plant Growth Regulators/metabolism , Unfolded Protein Response
13.
Front Plant Sci ; 13: 770284, 2022.
Article in English | MEDLINE | ID: mdl-35283877

ABSTRACT

Hybrid vigor and polyploidy are genetic events widely utilized to increase the productivity of crops. Given that bioenergy usage needs to be expanded, we investigated triploid hybrid vigor in terms of the biology of biomass-related willow traits and their relevance to the control of biomethane production. To produce triploid hybrid genotypes, we crossed two female diploid Swedish cultivars (Inger, Tordis) with two male autotetraploid willow (Salix viminalis) variants (PP-E7, PP-E15). Field studies at two locations and in two successive years recorded considerable midparent heterosis (MPH%) in early shoot length that ranged between 11.14 and 68.85% and in the growth rate between 34.12 and 97.18%. The three triploid hybrids (THs) developed larger leaves than their parental cultivars, and the MPH% for their CO2 assimilation rate varied between 0.84 and 25.30%. The impact of hybrid vigor on the concentrations of plant hormones in these TH genotypes reflected essentially different hormonal statuses that depended preferentially on maternal parents. Hybrid vigor was evinced by an elevated concentration of jasmonic acid in shoot meristems of all the three THs (MPH:29.73; 67.08; 91.91%). Heterosis in auxin-type hormones, such as indole-3-acetic acid (MPH:207.49%), phenylacetic acid (MPH:223.51%), and salicylic acid (MPH:27.72%) and benzoic acid (MPH:85.75%), was detectable in the shoots of TH21/2 plants. These hormones also accumulated in their maternal Inger plants. Heterosis in cytokinin-type hormones characterized the shoots of TH3/12 and TH17/17 genotypes having Tordis as their maternal parent. Unexpectedly, we detected abscisic acid as a positive factor in the growth of TH17/17 plants with negative MPH percentages in stomatal conductance and a lower CO2 assimilation rate. During anaerobic digestion, wood raw materials from the triploid willow hybrids that provided positive MPH% in biomethane yield (6.38 and 27.87%) showed negative MPH in their acid detergent lignin contents (from -8.01 to -14.36%). Altogether, these insights into controlling factors of above-ground growth parameters of willow genotypes support the utilization of triploid hybrid vigor in willow breeding to expand the cultivation of short rotation energy trees for renewable energy production.

14.
Plant Cell Rep ; 41(3): 675-698, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33713206

ABSTRACT

Because of the rise in global temperature, heat stress has become a major concern for crop production. Heat stress deteriorates plant productivity and alters phenological and physiological responses that aid in precise monitoring and sensing of mild-to-severe transient heat stress. Plants have evolved several sophisticated mechanisms including hormone-signaling pathways to sense heat stimuli and acquire heat stress tolerance. In response to heat stress, ethylene, a gaseous hormone, is produced which is indispensable for plant growth and development and tolerance to various abiotic stresses including heat stress. The manipulation of ethylene in developing heat stress tolerance targeting ethylene biosynthesis and signaling pathways has brought promising out comes. Conversely increased ethylene biosynthesis and signaling seem to exhibit inhibitory effects in plant growth responses from primitive to maturity stages. This review mainly focuses on the recent studies of ethylene involvement in plant responses to heat stress and its functional regulation, and molecular mechanism underlying the plant responses in the mitigation of heat-induced damages. Furthermore, this review also describes the crosstalk between ethylene and other signaling molecules under heat stress and approaches to improve heat stress tolerance in plants.


Subject(s)
Biodiversity , Plant Growth Regulators , Ethylenes , Heat-Shock Response , Hormones/metabolism , Plant Growth Regulators/metabolism , Plants/metabolism , Stress, Physiological/physiology , Temperature
15.
Plant Physiol Biochem ; 167: 470-480, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34419831

ABSTRACT

The impact of salicylic acid (SA) on ethylene (ET) production and polyamine (PA) metabolism was investigated in wild type (WT) and ET receptor mutant Never ripe (Nr) tomato leaves under normal photoperiod and prolonged darkness. Nr displayed higher ET emanation compared to WT under control conditions and after SA treatments, but the ET signalling was blocked in these tissues. The accumulation of PAs was induced by 1 mM but not by 0.1 mM SA and was higher in WT than in Nr leaves. Upon 1 mM SA treatment, which caused hypersensitive response, illuminated leaves of WT showed high spermine (Spm) content in parallel with an increased expression of S-adenosylmethionine decarboxylase and Spm synthase (SlSPMS) suggesting that this process depended on the light. In Nr, however, Spm content and the expression of the SlSPMS gene were very low independently of the light conditions and SA treatments. This suggests that Spm synthesis needs functional ET perception. In WT leaves 1 mM SA enhanced putrescine (Put) synthesis by increasing the expression of Put biosynthesis genes, arginine and ornithine decarboxylases under darkness, while they were down-regulated in Nr. The activities of diamine (DAO) and polyamine oxidases (PAO), however, were generally higher in Nr compared to the WT after SA treatments. In Nr both SA applications increased the expression of SlPAO1 under normal photoperiod, while SlPAO2 was down-regulated in the dark suggesting a diverse role of PAOs in PA catabolism. These results indicated that ET could modulate the SA-induced PA metabolism in light-dependent manner.


Subject(s)
Polyamines , Salicylic Acid , Darkness , Ethylenes , Photoperiod , Salicylic Acid/pharmacology
16.
Int J Mol Sci ; 22(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34361121

ABSTRACT

The first line of plant defence responses against pathogens can be induced by the bacterial flg22 and can be dependent on various external and internal factors. Here, we firstly studied the effects of daytime and ethylene (ET) using Never ripe (Nr) mutants in the local and systemic defence responses of intact tomato plants after flg22 treatments. Flg22 was applied in the afternoon and at night and rapid reactions were detected. The production of hydrogen peroxide and nitric oxide was induced by flg22 locally, while superoxide was induced systemically, in wild type plants in the light period, but all remained lower at night and in Nr leaves. Flg22 elevated, locally, the ET, jasmonic acid (JA) and salicylic acid (SA) levels in the light period; these levels did not change significantly at night. Expression of Pathogenesis-related 1 (PR1), Ethylene response factor 1 (ERF1) and Defensin (DEF) showed also daytime- and ET-dependent changes. Enhanced ERF1 and DEF expression and stomatal closure were also observable in systemic leaves of wild type plants in the light. These data demonstrate that early biotic signalling in flg22-treated leaves and distal ones is an ET-dependent process and it is also determined by the time of day and inhibited in the early night phase.


Subject(s)
Circadian Rhythm , Ethylenes/pharmacology , Plant Diseases/immunology , Plant Leaves/immunology , Plant Proteins/metabolism , Solanum lycopersicum/immunology , Gene Expression Regulation, Plant , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Signal Transduction
17.
J Plant Physiol ; 263: 153461, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34217837

ABSTRACT

Plant defence responses can be triggered by the application of elicitors for example chitosan (ß-1,4-linked glucosamine; CHT). It is well-known that CHT induces rapid, local production of reactive oxygen species (ROS) and nitric oxide (NO) resulting in fast stomatal closure. Systemic defence responses are based primarily on phytohormones such as ethylene (ET) and salicylic acid (SA), moreover on the expression of hormone-mediated defence genes and proteins. At the same time, these responses can be dependent also on external factors, such as light but its role was less-investigated. Based on our result in intact tomato plants (Solanum lycopersicum L.), CHT treatment not only induced significant ET emission and stomatal closure locally but also promoted significant production of superoxide which was also detectable in the distal, systemic leaves. However, these changes in ET and superoxide accumulation were detected only in wild type (WT) plants kept in light and were inhibited under darkness as well as in ET receptor Never ripe (Nr) mutants suggesting pivotal importance of ET and light in inducing resistance both locally and systemically upon CHT. Interestingly, CHT-induced NO production was mostly independent of ET or light. At the same time, expression of Pathogenesis-related 3 (PR3) was increased locally in both genotypes in the light and in WT leaves under darkness. This was also observed in distal leaves of WT plants. The CHT-induced endoplasmic reticulum (ER) stress, as well as unfolded protein response (UPR) were examined for the first time, via analysis of the lumenal binding protein (BiP). Whereas local expression of BiP was not dependent on the availability of light or ET, systemically it was mediated by ET.


Subject(s)
Chitosan/metabolism , Darkness , Ethylenes/metabolism , Plant Immunity/genetics , Plant Immunity/physiology , Plant Stomata/metabolism , Solanum lycopersicum/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Genetic Variation , Genotype , Solanum lycopersicum/genetics , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism
19.
Plant Cell Environ ; 44(10): 3197-3210, 2021 10.
Article in English | MEDLINE | ID: mdl-34191305

ABSTRACT

Light is essential for plant life. It provides a source of energy through photosynthesis and regulates plant growth and development and other cellular processes, such as by controlling the endogenous circadian clock. Light intensity, quality, duration and timing are all important determinants of plant responses, especially to biotic stress. Red light can positively influence plant defence mechanisms against different pathogens, but the molecular mechanism behind this phenomenon is not fully understood. Therefore, we reviewed the impact of red light on plant biotic stress responses against viruses, bacteria, fungi and nematodes, with a focus on the physiological effects of red light treatment and hormonal crosstalk under biotic stress in plants. We found evidence suggesting that exposing plants to red light increases levels of salicylic acid (SA) and induces SA signalling mediating the production of reactive oxygen species, with substantial differences between species and plant organs. Such changes in SA levels could be vital for plants to survive infections. Therefore, the application of red light provides a multidimensional aspect to developing innovative and environmentally friendly approaches to plant and crop disease management.


Subject(s)
Insect Control/methods , Light , Plant Diseases/prevention & control , Plant Growth Regulators/metabolism , Stress, Physiological , Animals , Bacteria/radiation effects , Fungi/radiation effects , Nematoda/radiation effects , Plant Viruses/radiation effects
20.
Chem Biol Interact ; 343: 109494, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33915161

ABSTRACT

Fumonisin B1 (FB1) is the most harmful mycotoxin which prevails in several crops and affects the growth and yield as well. Hence, keeping the alarming consequences of FB1 under consideration, there is still a need to seek other more reliable approaches and scientific knowledge for FB1-induced cell death and a comprehensive understanding of the mechanisms of plant defence strategies. FB1-induced disturbance in sphingolipid metabolism initiates programmed cell death (PCD) through various modes such as the elevated generation of reactive oxygen species, lipid peroxidation, cytochrome c release from the mitochondria, and activation of specific proteases and nucleases causing DNA fragmentation. There is a close interaction between sphingolipids and defence phytohormones in response to FB1 exposure regulating PCD and defence. In this review, the model plant Arabidopsis and various crops have been presented with different levels of susceptibility and resistivity exposed to various concentration of FB1. In addition to this, regulation of PCD and defence mechanisms have been also demonstrated at the physiological, biochemical and molecular levels to help the understanding of the role and function of FB1-inducible molecules and genes and their expressions in plants against pathogen attacks which could provide molecular and biochemical markers for the detection of toxin exposure.


Subject(s)
Fumonisins/toxicity , Mycotoxins/toxicity , Plants/drug effects , Apoptosis/drug effects , Gene Expression Regulation, Plant/drug effects , Organelles/drug effects , Plants/metabolism , Signal Transduction/drug effects , Sphingolipids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...