Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 307, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491140

ABSTRACT

The child-like question of why birds sing in the morning is difficult to answer, especially in polar regions. There, in summer animals live without the time constraints of daylight, and little is known about the rhythmicity of their routines. Moreover, in situ monitoring of animal behavior in remote areas is challenging and rare. Here, we use audio data from Greenland to show that a colony of a key Arctic-breeding seabird, the little auk (Alle alle), erupts with acoustic excitement at night in August, under the midnight sun. We demonstrate that the acoustic activity cycle is consistent with previous direct observations of the feeding and attendance patterns of the little auk. We interpret this pattern as reflecting their foraging activities, but further investigation on fledging and predators is needed. The study demonstrates that acoustic monitoring is a promising alternative to otherwise demanding manual observations of bird colonies in remote Arctic areas.


Subject(s)
Charadriiformes , Humans , Animals , Birds , Arctic Regions , Behavior, Animal , Greenland
2.
PLoS Comput Biol ; 18(9): e1010432, 2022 09.
Article in English | MEDLINE | ID: mdl-36136974

ABSTRACT

Detecting structures within the continuous diving behavior of marine animals is challenging, and no universal framework is available. We captured such diverse structures using chaos theory. By applying time-delay embedding to exceptionally long dive records (83 d) from the narwhal, we reconstructed the state-space portrait. Using measures of chaos, we detected a diurnal pattern and its seasonal modulation, classified data, and found how sea-ice appearance shifts time budgets. There is more near-surface rest but deeper dives at solar noon, and more intense diving during twilight and at night but to shallower depths (likely following squid); sea-ice appearance reduces rest. The introduced geometrical approach is simple to implement and potentially helpful for mapping and labeling long-term behavioral data, identifying differences between individual animals and species, and detecting perturbations.


Subject(s)
Diving , Whales , Animals , Rest , Time
3.
J Acoust Soc Am ; 151(1): 6, 2022 01.
Article in English | MEDLINE | ID: mdl-35105044

ABSTRACT

Measurements of underwater sound are still scarce in the rapidly changing Arctic. Tele-seismically detectable glacial earthquakes caused by iceberg calving have been known for nearly two decades but their underwater sound levels remain undocumented. Here, we present near-source underwater sound records from a kilometer-scale iceberg calving associated with a glacial earthquake. Records were obtained using an ocean-bottom lander deployed near the calving front of a Greenlandic tidewater Bowdoin Glacier in July 2019. An underwater-detonation-like signal with an overall duration of 30 min and two major phases owing to iceberg detachment and disintegration corresponded to extreme source sound levels (225 ± 10 dBp 2 p re 1 µPa) and acoustic energy on the order of 108-10 J or 0.1-7.6 tonnes TNT-equivalent. Our estimates and comparison with other anthropogenic and natural sources suggest that this type of geophysical event is among the loudest sounds in the Arctic. Such high sound levels are important for estimating the noise budget of the ocean and possible impacts on endemic Arctic species exposed to such sounds. The sound of calving may cause direct mechanical damage to the hearing of marine mammals such as narwhals and seals present in the glacial fjord.


Subject(s)
Earthquakes , Whales , Acoustics , Animals , Noise , Sound
4.
Nat Commun ; 12(1): 3929, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34168146

ABSTRACT

Shearing along subduction zones, laboratory experiments on analogue faults, and sliding along glacier beds are all associated with aseismic and co-seismic slip. In this study, an ocean-bottom seismometer is deployed near the terminus of a Greenlandic tidewater glacier, effectively insulating the signal from the extremely noisy surface seismic wavefield. Continuous, tide-modulated tremor related to ice speed is recorded at the bed of the glacier. When noise interference (for example, due to strong winds) is low, the tremor is also confirmed via analysis of seismic waveforms from surface stations. The signal resembles the tectonic tremor commonly observed during slow-earthquake events in subduction zones. We propose that the glacier sliding velocity can be retrieved from the observed seismic noise. Our approach may open new opportunities for monitoring calving-front processes in one of the most difficult-to-access cryospheric environments.

SELECTION OF CITATIONS
SEARCH DETAIL