Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 15855, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37740075

ABSTRACT

The chemistry and mineralogy of slabs subducted into lower mantle control slab rheology and impact the deep volatile cycle. It is known that the metamorphism of little-altered oceanic crust results in eclogite rocks with subequal proportions of garnet and clinopyroxene. With increasing pressure, these minerals react to stabilize pyrope-rich tetragonal majoritic garnet. However, some eclogites contain higher proportions of omphacitic clinopyroxene, caused by Na- and Si-rich metasomatism on the ocean floor or during subduction. The mineralogy of such eclogites is expected to evolve differently. Here, we discuss the results of the crystallization products of omphacitic glass at ~ 18 and ~ 25 GPa and 1000 °C to simulate P-T regimes of cold subduction. The full characterization of the recovered samples indicates evidence of crystallization of Na-, Si-rich cubic instead of tetragonal majorite. This cubic majorite can incorporate large amounts of ferric iron, promoting redox reactions with surrounding volatile-bearing fluids and, ultimately, diamond formation. In addition, the occurrence of cubic majorite in the slab would affect the local density, favoring the continued buoyancy of the slab as previously proposed by seismic observations. Attention must be paid to omphacitic inclusions in sublithospheric diamonds as these might have experienced back-transformation from the HP isochemical cubic phase.

2.
Sci Rep ; 9(1): 10051, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31296952

ABSTRACT

Leucite is nowadays an important component in ceramic restoration systems with particular suitability to dental porcelains. The leucite synthesis from a hydrothermally-derived precursor is here presented. A silicate solution was prepared by mixing a naturally derived amorphous silica (diatomitic rock from Crotone, southern Italy) with potassium hydroxide and an aluminate solution was obtained by mixing aluminium hydroxide and potassium hydroxide. Three mixtures of varying ratios of aluminate and silicate solutions were prepared and submitted to hydrothermal treatment at 150 °C for one hour. Subsequently these hydrothermal precursors were subjected to calcination at the temperature of 1000 °C for variable time intervals, thus resulting in 3 series of syntheses. The synthesis run 3 turned out to be the best from the point of view of temporal yield showing the crystallization of the leucite after only 15 hours of heat treatment. The products of synthesis run 3 were fully characterised by Powder X-Ray Diffraction, Inductively Coupled Plasma Optical Emission Spectrometry, Infrared Spectroscopy and Thermal Analysis. The amorphous phase in the synthesis powders was estimated by quantitative phase analysis using the combined Rietveld and reference intensity ratio methods. Density of leucite was also achieved by He-pycnometry. The use of a cost effective starting material such as a diatomite in the experimental route makes the process highly attractive for expansion to an industrial scale especially considering that both the chemical and physical characterizations of our leucite product are highly satisfactory. Last but not least we explain some inferences that can be obtained from this process of synthesis in order to a better understanding of some natural occurrences of leucite in geologic systems related to basaltic magmas.

SELECTION OF CITATIONS
SEARCH DETAIL