Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768348

ABSTRACT

Vascular calcification (VC) is an important contributor and prognostic factor in the pathogenesis of cardiovascular diseases. VC is an active process mediated by the release of extracellular vesicles by vascular smooth muscle cells (VSMCs), and the enzyme neutral sphingomyelinase 2 (nSMase2 or SMPD3) plays a key role. Upon activation, the enzyme catalyzes the hydrolysis of sphingomyelin, thereby generating ceramide and phosphocholine. This conversion mediates the release of exosomes, a type of extracellular vesicles (EVs), which ultimately forms the nidus for VC. nSMase2 therefore represents a drug target, the inhibition of which is thought to prevent or halt VC progression. In search of novel druglike small molecule inhibitors of nSMase2, we have used virtual ligand screening to identify potential ligands. From an in-silico collection of 48,6844 small druglike molecules, we selected 996 compounds after application of an in-house multi-step procedure combining different filtering and docking procedures. Selected compounds were functionally tested in vitro; from this, we identified 52 individual hit molecules that inhibited nSMase2 activity by more than 20% at a concentration of 150 µM. Further analysis showed that five compounds presented with IC50s lower than 2 µM. Of these, compounds ID 5728450 and ID 4011505 decreased human primary VSMC EV release and calcification in vitro. The hit molecules identified here represent new classes of nSMase2 inhibitors that may be developed into lead molecules for the therapeutic or prophylactic treatment of VC.


Subject(s)
Exosomes , Muscle, Smooth, Vascular , Vascular Calcification , Humans , Exosomes/genetics , Exosomes/metabolism , Exosomes/pathology , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Vascular Calcification/drug therapy , Vascular Calcification/pathology
2.
Front Mol Biosci ; 10: 1265455, 2023.
Article in English | MEDLINE | ID: mdl-38268724

ABSTRACT

The anti-inflammatory interleukin-1 receptor associated kinase-M (IRAK-M) is a negative regulator of MyD88/IRAK-4/IRAK-1 signaling. However, IRAK-M has also been reported to activate NF-κB through the MyD88/IRAK-4/IRAK-M myddosome in a MEKK-3 dependent manner. Here we provide support that IRAK-M uses three surfaces of its Death Domain (DD) to activate NF-κB downstream of MyD88/IRAK-4/IRAK-M. Surface 1, with central residue Trp74, binds to MyD88/IRAK-4. Surface 2, with central Lys60, associates with other IRAK-M DDs to form an IRAK-M homotetramer under the MyD88/IRAK-4 scaffold. Surface 3; with central residue Arg97 is located on the opposite side of Trp74 in the IRAK-M DD tetramer, lacks any interaction points with the MyD88/IRAK-4 complex. Although the IRAK-M DD residue Arg97 is not directly involved in the association with MyD88/IRAK-4, Arg97 was responsible for 50% of the NF-κB activation though the MyD88/IRAK-4/IRAK-M myddosome. Arg97 was also found to be pivotal for IRAK-M's interaction with IRAK-1, and important for IRAK-M's interaction with TRAF6. Residue Arg97 was responsible for 50% of the NF-κB generated by MyD88/IRAK-4/IRAK-M myddosome in IRAK-1/MEKK3 double knockout cells. By structural modeling we found that the IRAK-M tetramer surface around Arg97 has excellent properties that allow formation of an IRAK-M homo-octamer. This model explains why mutation of Arg97 results in an IRAK-M molecule with increased inhibitory properties: it still binds to myddosome, competing with myddosome IRAK-1 binding, while resulting in less NF-κB formation. The findings further identify the structure-function properties of IRAK-M, which is a potential therapeutic target in inflammatory disease.

3.
J Mol Graph Model ; 111: 108061, 2022 03.
Article in English | MEDLINE | ID: mdl-34837785

ABSTRACT

Signaling by Toll-Like Receptors and the Interleukin-1 Receptor (IL1-R) involves intracellular binding of MyD88, followed by assembly of IL1-R Associated Kinases (IRAKs) into the so-called Myddosome. Using NMR, Nechama et al. determined the structure of the IRAK-M death domain monomer (PDBid: 5UKE). With this structure, they performed a docking study to model the location of IRAK-M in the Myddosome. Based on this, they present a molecular basis for selectivity of IRAK-M towards IRAK1 over IRAK2 binding. When we attempted to use 5UKE as a homology modeling template, we noticed that our 5UKE-based models had structural issues, such as disallowed torsion angles and solvent exposed tryptophans. We therefore analyzed the NMR ensemble of 5UKE using structure validation tools and we compared 5UKE with homologous high-resolution X-ray structures. We identified several structural anomalies in 5UKE, including packing issues, frayed helices and improbable side chain conformations. We used Yasara to build a homology model, based on two high resolution death domain crystal structures, as an alternative model for the IRAK-M death domain (atomic coordinates, modeling details and validation are available at https://swift.cmbi.umcn.nl/gv/service/5uke/). Our model agrees better with known death domain structure information than 5UKE and also with the chemical shift data that was deposited for 5UKE.


Subject(s)
Signal Transduction , Protein Structure, Secondary
4.
Future Med Chem ; 11(9): 1015-1033, 2019 05.
Article in English | MEDLINE | ID: mdl-31141413

ABSTRACT

The horizon of drug discovery is currently expanding to target and modulate protein-protein interactions (PPIs) in globular proteins and intrinsically disordered proteins that are involved in various diseases. To either interrupt or stabilize PPIs, the 3D structure of target protein-protein (or protein-peptide) complexes can be exploited to rationally design PPI modulators (inhibitors or stabilizers) through structure-based molecular design. In this review, we present an overview of experimental and computational methods that can be used to determine 3D structures of protein-protein complexes. Several approaches including rational and in silico methods that can be applied to design peptides, peptidomimetics and small compounds by utilization of determined 3D protein-protein/peptide complexes are summarized and illustrated.


Subject(s)
Drug Design , Peptides/pharmacology , Peptidomimetics/pharmacology , Protein Interaction Maps/drug effects , Proteins/metabolism , Animals , Drug Discovery/methods , Humans , Molecular Docking Simulation , Peptides/chemistry , Peptidomimetics/chemistry , Protein Binding , Proteins/chemistry
5.
Eur Heart J ; 40(4): 372-382, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30452556

ABSTRACT

Aims: The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis. Methods and results: The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb-/-Apoe-/- mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb-/-Apoe-/- macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb-/-Apoe-/- CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb-/-Apoe-/- bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Conclusion: Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.


Subject(s)
Atherosclerosis/etiology , CD8-Positive T-Lymphocytes/immunology , Lymphoma, B-Cell/complications , Macrophages/pathology , Oncogene Protein v-cbl/metabolism , Plaque, Atherosclerotic/etiology , Animals , Apoptosis , Atherosclerosis/metabolism , Atherosclerosis/pathology , Disease Models, Animal , Humans , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology
6.
Cell Metab ; 28(1): 175-182.e5, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29861387

ABSTRACT

Onset of cardiovascular complications as a consequence of atherosclerosis exhibits a circadian incidence with a peak in the morning hours. Although development of atherosclerosis extends for long periods of time through arterial leukocyte recruitment, we hypothesized that discrete diurnal invasion of the arterial wall could sustain atherogenic growth. Here, we show that myeloid cell recruitment to atherosclerotic lesions oscillates with a peak during the transition from the activity to the resting phase. This diurnal phenotype is regulated by rhythmic release of myeloid cell-derived CCL2, and blockade of its signaling abolished oscillatory leukocyte adhesion. In contrast, we show that myeloid cell adhesion to microvascular beds peaks during the early activity phase. Consequently, timed pharmacological CCR2 neutralization during the activity phase caused inhibition of atherosclerosis without disturbing microvascular recruitment. These findings demonstrate that chronic inflammation of large vessels feeds on rhythmic myeloid cell recruitment, and lay the foundation for chrono-pharmacology-based therapy.


Subject(s)
Atherosclerosis/therapy , Cell Adhesion , Chemokine CCL2/metabolism , Mesenchymal Stem Cells/metabolism , Myeloid Cells/metabolism , Receptors, CCR2/metabolism , Animals , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
7.
Eur J Med Chem ; 122: 786-801, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27477687

ABSTRACT

The enzyme 15-lipoxygenase-1 (15-LOX-1) plays a dual role in diseases with an inflammatory component. On one hand 15-LOX-1 plays a role in pro-inflammatory gene expression and on the other hand it has been shown to be involved in central nervous system (CNS) disorders by its ability to mediate oxidative stress and damage of mitochondrial membranes under hypoxic conditions. In order to further explore applications in the CNS, novel 15-LOX-1 inhibitors with favorable physicochemical properties need to be developed. Here, we present Substitution Oriented Screening (SOS) in combination with Multi Component Chemistry (MCR) as an effective strategy to identify a diversely substituted small heterocyclic inhibitors for 15-LOX-1, denoted ThioLox, with physicochemical properties superior to previously identified inhibitors. Ex vivo biological evaluation in precision-cut lung slices (PCLS) showed inhibition of pro-inflammatory gene expression and in vitro studies on neuronal HT-22 cells showed a strong protection against glutamate toxicity for this 15-LOX-1 inhibitor. This provides a novel approach to identify novel small with favorable physicochemical properties for exploring 15-LOX-1 as a drug target in inflammatory diseases and neurodegeneration.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase/metabolism , Neuroprotective Agents/pharmacology , Thiophenes/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Cell Line , Dose-Response Relationship, Drug , Lipoxygenase/chemistry , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/metabolism , Mice , Neuroprotective Agents/chemistry , Neuroprotective Agents/metabolism , Thiophenes/chemistry , Thiophenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...