Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2896, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37210421

ABSTRACT

The non-deterministic behavior of the Duffing oscillator is classically attributed to the coexistence of two steady states in a double-well potential. However, this interpretation fails in the quantum-mechanical perspective which predicts a single unique steady state. Here, we measure the non-equilibrium dynamics of a superconducting Duffing oscillator and experimentally reconcile the classical and quantum descriptions as indicated by the Liouvillian spectral theory. We demonstrate that the two classically regarded steady states are in fact quantum metastable states. They have a remarkably long lifetime but must eventually relax into the single unique steady state allowed by quantum mechanics. By engineering their lifetime, we observe a first-order dissipative phase transition and reveal the two distinct phases by quantum state tomography. Our results reveal a smooth quantum state evolution behind a sudden dissipative phase transition and form an essential step towards understanding the intriguing phenomena in driven-dissipative systems.

2.
Sci Adv ; 7(52): eabk0891, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34936429

ABSTRACT

The field of quantum communication promises to provide efficient and unconditionally secure ways to exchange information, particularly, in the form of quantum states. Meanwhile, recent breakthroughs in quantum computation with superconducting circuits trigger a demand for quantum communication channels between spatially separated superconducting processors operating at microwave frequencies. In pursuit of this goal, we demonstrate the unconditional quantum teleportation of propagating coherent microwave states by exploiting two-mode squeezing and analog feedforward over a macroscopic distance of d = 0.42 m. We achieve a teleportation fidelity of F = 0.689 ± 0.004, exceeding the asymptotic no-cloning threshold. Thus, the quantum nature of the teleported states is preserved, opening the avenue toward unconditional security in microwave quantum communication.

3.
ChemSusChem ; 7(8): 2140-5, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24954672

ABSTRACT

The spray-deposition technique is an effective and scalable method to deposit zinc oxide nanostructures, which are used as active layers for dye-sensitized solar cells (DSSCs) in the present study. The dynamics of structural evolution are studied with grazing incidence small-angle X-ray scattering during in situ spraying. Nanostructured films obtained through multiple spray shots provide suitable structural length scales, morphologies, and film thicknesses; this leads to reasonable performance in a DSSC with the highest short-circuit current density reported so far.


Subject(s)
Coloring Agents/chemistry , Electric Power Supplies , Solar Energy , Zinc Oxide/chemistry , Nanostructures/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL