Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 65(4): 045014, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31739291

ABSTRACT

Microdosimetry is a particularly powerful method to estimate the relative biological effectiveness (RBE) of any mixed radiation field. This is particularly convenient for therapeutic heavy ion therapy (HIT) beams, referring to ions larger than protons, where the RBE of the beam can vary significantly along the Bragg curve. Additionally, due to the sharp dose gradients at the end of the Bragg peak (BP), or spread out BP, to make accurate measurements and estimations of the biological properties of a beam a high spatial resolution is required, less than a millimetre. This requirement makes silicon microdosimetry particularly attractive due to the thicknesses of the sensitive volumes commonly being ∼10 [Formula: see text]m or less. Monte Carlo (MC) codes are widely used to study the complex mixed HIT radiation field as well as to model the response of novel microdosimeter detectors when irradiated with HIT beams. Therefore it is essential to validate MC codes against experimental measurements. This work compares measurements performed with a silicon microdosimeter in mono-energetic [Formula: see text], [Formula: see text] and [Formula: see text] ion beams of therapeutic energies, against simulation results calculated with the Geant4 toolkit. Experimental and simulation results were compared in terms of microdosimetric spectra (dose lineal energy, [Formula: see text]), the dose mean lineal energy, y  D and the RBE10, as estimated by the microdosimetric kinetic model (MKM). Overall Geant4 showed reasonable agreement with experimental measurements. Before the distal edge of the BP, simulation and experiment agreed within ∼10% for y  D and ∼2% for RBE10. Downstream of the BP less agreement was observed between simulation and experiment, particularly for the [Formula: see text] and [Formula: see text] beams. Simulation results downstream of the BP had lower values of y  D and RBE10 compared to the experiment due to a higher contribution from lighter fragments compared to heavier fragments.


Subject(s)
Heavy Ion Radiotherapy , Monte Carlo Method , Radiometry/methods , Silicon , Kinetics , Models, Biological , Relative Biological Effectiveness
2.
Radiat Prot Dosimetry ; 180(1-4): 365-371, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29069515

ABSTRACT

Using the CMRP 'bridge' µ+ probe, microdosimetric measurements were undertaken out-of-field using a therapeutic scanning proton pencil beam and in-field using a 12C ion therapy field. These measurements were undertaken at Mayo Clinic, Rochester, USA and at HIMAC, Chiba, Japan, respectively. For a typical proton field used in the treatment of deep-seated tumors, we observed dose-equivalent values ranging from 0.62 to 0.99 mSv/Gy at locations downstream of the distal edge. Lateral measurements at depths close to the entrance and along the SOBP plateau were found to reach maximum values of 3.1 mSv/Gy and 5.3 mSv/Gy at 10 mm from the field edge, respectively, and decreased to ~0.04 mSv/Gy 120 mm from the field edge. The ability to measure the dose-equivalent with high spatial resolution is particularly relevant to healthy tissue dose calculations in hadron therapy treatments. We have also shown qualitatively and quantitively the effects critical organ motion would have in treatment using microdosimetric spectra. Large differences in spectra and RBE10 were observed for treatments where miscalculations of 12C ion range would result in critical structures being irradiated, showing the importance of motion management.


Subject(s)
Heavy Ion Radiotherapy/methods , Microtechnology/instrumentation , Phantoms, Imaging , Proton Therapy/methods , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Silicon/chemistry , Computer Simulation , Humans , Radiometry/methods , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...