Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Article in English | MEDLINE | ID: mdl-38105681

ABSTRACT

The rapidly increasing incidence of nonalcoholic fatty liver disease (NAFLD) is a growing health crisis worldwide. If not detected early, NAFLD progression can lead to irreversible pathological states, including liver fibrosis and cirrhosis. Using in vitro models to understand the molecular pathogenesis has been extremely beneficial; however, most studies have utilized only short-term exposures, highlighting a limitation in current research to model extended fat-induced liver injury. We treated Hep3B cells continuously with a low dose of oleic and palmitic free fatty acids (FFAs) for 7 or 28 days. Transcriptomic analysis identified dysregulated molecular pathways and differential expression of 984 and 917 genes after FFA treatment for 7 and 28 days respectively. DNA methylation analysis of altered DNA methylated regions (DMRs) found 7 DMRs in common. Pathway analysis of differentially expressed genes (DEGs) revealed transcriptomic changes primarily involved in lipid metabolism, small molecule biochemistry, and molecular transport. Western blot analysis revealed changes in PDK4 and CPT1A protein levels, indicative of mitochondrial stress. In line with this, there was mitochondrial morphological change demonstrating breakdown of the mitochondrial network. This in vitro model of human NAFL mimics results observed in human patients and may be used as a pre-clinical model for drug intervention.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Fatty Acids, Nonesterified/metabolism
2.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G232-G243, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36625475

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disease, is characterized by substantial variations in case-level severity. In this study, we used a genetically diverse Collaborative Cross (CC) mouse population model to analyze the global transcriptome and clarify the molecular mechanisms involved in hepatic fat accumulation that determine the level and severity of NAFLD. Twenty-four strains of male CC mice were maintained on a high-fat/high-sucrose (HF/HS) diet for 12 wk, and their hepatic gene expression profiles were determined by next-generation RNA sequencing. We found that the development of the nonalcoholic fatty liver (NAFL) phenotype in CC mice coincided with significant changes in the expression of hepatic genes at the population level, evidenced by the presence of 724 differentially expressed genes involved in lipid and carbohydrate metabolism, cell morphology, vitamin and mineral metabolism, energy production, and DNA replication, recombination, and repair. Importantly, expression of 68 of these genes strongly correlated with the extent of hepatic lipid accumulation in the overall population of HF/HS diet-fed male CC mice. Results of partial least squares (PLS) modeling showed that these derived hepatic gene expression signatures help to identify the individual mouse strains that are highly susceptible to the development of NAFLD induced by an HF/HS diet. These findings imply that gene expression profiling, combined with a PLS modeling approach, may be a useful tool to predict NAFLD severity in genetically diverse patient populations.NEW & NOTEWORTHY Feeding male Collaborative Cross mice an obesogenic diet allows modeling NAFLD at the population level. The development of NAFLD coincided with significant hepatic transcriptomic changes in this model. Genes (724) were differentially expressed and expression of 68 genes strongly correlated with the extent of hepatic lipid accumulation. Partial least squares modeling showed that derived hepatic gene expression signatures may help to identify individual mouse strains that are highly susceptible to the development of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Transcriptome , Collaborative Cross Mice/genetics , Sucrose/metabolism , Liver/metabolism , Diet, High-Fat , Lipids , Mice, Inbred C57BL , Lipid Metabolism
3.
J Nutr Biochem ; 109: 109108, 2022 11.
Article in English | MEDLINE | ID: mdl-35858665

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), one of the most common forms of chronic liver disease, is characterized by the excessive accumulation of lipid species in hepatocytes. Recent studies have indicated that in addition to the total lipid quantities, changes in lipid composition are a determining factor in hepatic lipotoxicity. Using ultra-high performance liquid chromatography coupled with electrospray tandem mass spectrometry, we analyzed the esterified fatty acid composition in 24 strains of male and female Collaborative Cross (CC) mice fed a high fat/high sucrose (HF/HS) diet for 12 weeks. Changes in lipid composition were found in all strains after the HF/HS diet, most notably characterized by increases in monounsaturated fatty acids (MUFA) and decreases in polyunsaturated fatty acids (PUFA). Similar changes in MUFA and PUFA were observed in a choline- and folate-deficient (CFD) mouse model of NAFLD, as well as in hepatocytes treated in vitro with free fatty acids. Analysis of fatty acid composition revealed that alterations were accompanied by an increase in the estimated activity of MUFA generating SCD1 enzyme and an estimated decrease in the activity of PUFA generating FADS1 and FADS2 enzymes. PUFA/MUFA ratios were inversely correlated with lipid accumulation in male and female CC mice fed the HF/HS diet and with morphological markers of hepatic injury in CFD diet-fed mouse model of NAFLD. These results demonstrate that different models of NAFLD are characterized by similar changes in the esterified fatty acid composition and that alterations in PUFA/MUFA ratios may serve as a diagnostic marker for NAFLD severity.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Choline , Collaborative Cross Mice , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids , Fatty Acids, Monounsaturated , Fatty Acids, Nonesterified , Fatty Acids, Unsaturated , Female , Folic Acid , Lipidomics , Liver , Male , Mice , Non-alcoholic Fatty Liver Disease/etiology , Sucrose
4.
Mutat Res Rev Mutat Res ; 789: 108408, 2022.
Article in English | MEDLINE | ID: mdl-35690411

ABSTRACT

Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.


Subject(s)
Carcinogens, Environmental , Epigenomics , Carcinogens/toxicity , Chromatin , DNA Damage , Epigenesis, Genetic , Humans
5.
Curr Res Toxicol ; 3: 100071, 2022.
Article in English | MEDLINE | ID: mdl-35602005

ABSTRACT

Exposures to mercury and arsenic are known to pose significant threats to human health. Effects specific to organic vs. inorganic forms of these toxic elements are less understood however, especially for organic dimethylarsinic acid (DMA), which has recently been detected in pups of rodent dams orally exposed to inorganic sodium (meta)arsenite (NaAsO2). Caenorhabditis elegans is a small animal alternative toxicity model. To fill data gaps on the effects of DMA relative to NaAsO2, C. elegans were exposed to these two compounds alongside more thoroughly researched inorganic mercury chloride (HgCl2) and organic methylmercury chloride (meHgCl). For timing of developmental milestone acquisition in C. elegans, meHgCl was 2 to 4-fold more toxic than HgCl2, and NaAsO2 was 20-fold more toxic than DMA, ranking the four compounds meHgCl > HgCl2 > NaAsO2 ≫ DMA for developmental toxicity. Methylmercury induced significant decreases in population locomotor activity levels in developing C. elegans. DMA was also associated with developmental hypoactivity, but at >100-fold higher concentrations than meHgCl. Transcriptional alterations in native genes were observed in wild type C. elegans adults exposed to concentrations equitoxic for developmental delay in juveniles. Both forms of arsenic induced genes involved in immune defense and oxidative stress response, while the two mercury species induced proportionally more genes involved in transcriptional regulation. A transgenic bioreporter for activation of conserved proteosome specific unfolded protein response was strongly activated by NaAsO2, but not DMA at tested concentrations. HgCl2 and meHgCl had opposite effects on a bioreporter for unfolded protein response in the endoplasmic reticulum. Presented experiments indicating low toxicity for DMA in C. elegans are consistent with human epidemiologic data correlating higher arsenic methylation capacity with resistance to arsenic toxicity. This work contributes to the understanding of the accuracy and fit-for-use categories for C. elegans toxicity screening and its usefulness to prioritize compounds of concern for further testing.

6.
Epigenetics ; 17(11): 1513-1534, 2022 11.
Article in English | MEDLINE | ID: mdl-35502615

ABSTRACT

Hepatocellular carcinoma (HCC) is mostly triggered by environmental and life-style factors and may involve epigenetic aberrations. However, a comprehensive documentation of the link between the dysregulated epigenome, transcriptome, and liver carcinogenesis is lacking. In the present study, Fischer-344 rats were fed a choline-deficient (CDAA, cancer group) or choline-sufficient (CSAA, healthy group) L-amino acid-defined diet. At the end of 52 weeks, transcriptomic alterations in livers of rats with HCC tumours and healthy livers were investigated by RNA sequencing. DNA methylation and gene expression were assessed by pyrosequencing and quantitative reverse-transcription PCR (qRT-PCR), respectively. We discovered 1,848 genes that were significantly differentially expressed in livers of rats with HCC tumours (CDAA) as compared with healthy livers (CSAA). Upregulated genes in the CDAA group were associated with cancer-related functions, whereas macronutrient metabolic processes were enriched by downregulated genes. Changes of highest magnitude were detected in numerous upregulated genes that govern key oncogenic signalling pathways, including Notch, Wnt, Hedgehog, and extracellular matrix degradation. We further detected perturbations in DNA methylating and demethylating enzymes, which was reflected in decreased global DNA methylation and increased global DNA hydroxymethylation. Four selected upregulated candidates, Mmp12, Jag1, Wnt4, and Smo, demonstrated promoter hypomethylation with the most profound decrease in Mmp12. MMP12 was also strongly overexpressed and hypomethylated in human HCC HepG2 cells as compared with primary hepatocytes, which coincided with binding of Ten-eleven translocation 1 (TET1). Our findings provide comprehensive evidence for gene expression changes and dysregulated epigenome in HCC pathogenesis, potentially revealing novel targets for HCC prevention/treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Rats , Amino Acids/genetics , Amino Acids/metabolism , Carcinoma, Hepatocellular/pathology , Choline , DNA/metabolism , DNA Methylation , Epigenesis, Genetic , Gene Expression , Liver Neoplasms/metabolism , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 12/metabolism , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics , Rats, Inbred F344
7.
Epigenetics ; 17(11): 1462-1476, 2022 11.
Article in English | MEDLINE | ID: mdl-35324388

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver disease, and patient susceptibility to its onset and progression is influenced by several factors. In this study, we investigated whether altered hepatic DNA methylation in liver tissue correlates with the degree of severity of NAFLD-like liver injury induced by a high-fat and high-sucrose (HF/HS) diet in Collaborative Cross (CC) mice. Using genome-wide targeted bisulphite DNA methylation next-generation sequencing, we found that mice with different non-alcoholic fatty liver (NAFL) phenotypes could be distinguished by changes in hepatic DNA methylation profiles. Specifically, NAFL-prone male CC042 mice exhibited more prominent DNA methylation changes compared with male CC011 mice and female CC011 and CC042 mice that developed only a mild NAFL phenotype. Moreover, these mouse strains demonstrated different patterns of DNA methylation. While the HF/HS diet induced both DNA hypomethylation and DNA hypermethylation changes in all the mouse strains, the NAFL-prone male CC042 mice demonstrated a global predominance of DNA hypermethylation, whereas a more pronounced DNA hypomethylation pattern developed in the mild-NAFL phenotypic mice. In a targeted analysis of selected genes that contain differentially methylated regions (DMRs), we identified NAFL phenotype-associated differences in DNA methylation and gene expression of the Apoa4, Gls2, and Apom genes in severe NAFL-prone mice but not in mice with mild NAFL phenotypes. These changes in the expression of Apoa4 and Gls2 coincided with similar findings in a human in vitro cell model of diet-induced steatosis and in patients with NAFL. These results suggest that changes in the expression and DNA methylation status of these three genes may serve as a set of predictive markers for the development of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Male , Female , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , DNA Methylation , Collaborative Cross Mice/genetics , Sucrose/metabolism , Liver/metabolism , Diet , DNA/metabolism , Gene Expression , Diet, High-Fat/adverse effects
8.
Food Chem Toxicol ; 163: 112938, 2022 May.
Article in English | MEDLINE | ID: mdl-35314295

ABSTRACT

A diet deficient in donors of methyl group, such as methionine, affects DNA methylation and hepatic lipid metabolism. Methionine also affects other epigenetic mechanisms, such as microRNAs. We investigated the effects of methionine-supplemented or methionine-deficient diets on the expression of chromatin-modifying genes, global DNA methylation, the expression and methylation of genes related to lipid metabolism, and the expression of microRNAs in mouse liver. Female Swiss albino mice were fed a control diet (0.3% methionine), a methionine-supplemented diet (2% methionine), and a methionine-deficient diet (0% methionine) for 10 weeks. The genes most affected by the methionine-supplemented diet were associated with histone and DNA methyltransferases activity, while the methionine-deficient diet mostly altered the expression of histone methyltransferases genes. Both diets altered the global DNA methylation and the expression and gene-specific methylation of the lipid metabolism gene Apoa5. Both diets altered the expression of several liver homeostasis-related microRNAs, including miR-190b-5p, miR-130b-3p, miR-376c-3p, miR-411-5p, miR-29c-3p, miR-295-3p, and miR-467d-5p, with the methionine-deficient diet causing a more substantial effect. The effects of improper amounts of methionine in the diet on liver pathologies may involve a cooperative action of chromatin-modifying genes, which results in an aberrant pattern of global and gene-specific methylation, and microRNAs responsible for liver homeostasis.


Subject(s)
Methionine , MicroRNAs , Animals , Chromatin/metabolism , DNA Methylation , Diet , Epigenesis, Genetic , Female , Liver , Mice , MicroRNAs/genetics , MicroRNAs/metabolism
10.
Curr Protoc ; 1(8): e211, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34370903

ABSTRACT

Human hepatocellular carcinoma (HCC) develops most often as a complication of fibrosis or cirrhosis. Although most human studies of HCC provide crucial insights into the molecular signatures of HCC, they seldom address its etiology. Mouse models provide essential tools for investigating the pathogenesis of HCC, but the majority of rodent cancer models do not feature liver fibrosis. Detailed here is a protocol for an experimental mouse model of HCC that arises in association with advanced liver fibrosis. The disease model is induced by a single injection of N-nitrosodiethylamine (DEN) at 2 weeks of age followed by repeated administration of carbon tetrachloride (CCl4 ) from 8 weeks of age for up to 14 consecutive weeks. A dramatic potentiation of liver tumor incidence is observed following administration of DEN and CCl4 , with 100% of mice developing liver tumors at 5 months of age. This model has been employed for studying the molecular mechanisms of fibrogenesis and HCC development, as well as for cancer hazard/chemotherapy testing of drug candidates. © 2021 Wiley Periodicals LLC. Basic Protocol: The DEN and CCl4 -induced mouse model of fibrosis and inflammation-associated hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms, Experimental , Liver Neoplasms , Animals , Humans , Inflammation , Liver Cirrhosis/chemically induced , Liver Neoplasms, Experimental/chemically induced , Mice
11.
Carcinogenesis ; 42(8): 1026-1036, 2021 08 19.
Article in English | MEDLINE | ID: mdl-33999989

ABSTRACT

Hepatocellular carcinoma (HCC) presents with a high treatment resistance and poor prognosis. Early diagnosis and preventive approaches such as chemoprevention are essential for the HCC control. Therefore, we evaluated the chemopreventive effects of butyrate-containing structured lipids (STLs) administered during the promotion stage of hepatocarcinogenesis in rats submitted to the 'resistant hepatocyte' (RH) model. Administration of butyrate-containing STLs inhibited the incidence and mean number of visible hepatic nodules per rat and reduced the number and area of glutathione S-transferase placental form-positive (GST-P+) preneoplastic focal lesions in the livers. This was accompanied by the induction of apoptosis and an increased level of hepatic butyric acid. Treatment with butyrate-containing STLs resulted in increased histone H3 lysine 9 (H3K9) acetylation, reduction of total histone deacetylase (HDAC) activity, and lower levels of HDAC4 and HDAC6 proteins. The chemopreventive effect of butyrate-containing STLs was also associated with the increased nuclear compartmentalization of p53 protein and reduced expression of the Bcl-2 protein. In addition, rats treated with butyrate-containing STLs showed decreased DNA damage and telomerase activity in the livers. These results demonstrate that the suppressive activity of butyrate-containing STLs is associated with inhibition of elevated during hepatocarcinogenesis chromatin-modifying proteins HDAC4 and HDAC6, subcellular redistribution of the p53 protein, and decreased DNA damage and telomerase activity.


Subject(s)
Butyrates/metabolism , DNA Damage , Glutathione S-Transferase pi/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylases/metabolism , Lipids/chemistry , Liver Neoplasms, Experimental/pathology , Telomerase/metabolism , Animals , Carcinogenesis , Caspase 3/metabolism , Liver Neoplasms, Experimental/enzymology , Liver Neoplasms, Experimental/genetics , Male , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Wistar , Subcellular Fractions/enzymology , Tumor Suppressor Protein p53/metabolism , alpha-Linolenic Acid/metabolism
12.
J Nutr Biochem ; 86: 108496, 2020 12.
Article in English | MEDLINE | ID: mdl-32920087

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most aggressive human cancers. The rising incidence of HCC worldwide and its resistance to pharmacotherapy indicate that the prevention of HCC development may be the most impactful strategy to improve HCC-related morbidity and mortality. Among the broad range of chemopreventive agents, the use of dietary and nutritional agents is an attractive and promising approach; however, a better understanding of the mechanisms of their potential cancer suppressive action is needed to justify their use. In the present study, we investigated the underlying molecular pathways associated with the previously observed suppressive effect of butyrate-containing structured lipids (STLs) against liver carcinogenesis using a rat "resistant hepatocyte" model of hepatocarcinogenesis that resembles the development of HCC in humans. Using whole transcriptome analysis, we demonstrate that the HCC suppressive effect of butyrate-containing STLs is associated with the inhibition of the cell migration, cytoskeleton organization, and epithelial-to-mesenchymal transition (EMT), mediated by the reduced levels of RACGAP1 and RAC1 proteins. Mechanistically, the inhibition of the Racgap1 and Rac1 oncogenes is associated with cytosine DNA and histone H3K27 promoter methylation. Inhibition of the RACGAP1/RAC1 oncogenic signaling pathways and EMT may be a valuable approach for liver cancer prevention.


Subject(s)
Butyrates/pharmacology , Carcinoma, Hepatocellular/prevention & control , Epithelial-Mesenchymal Transition , Liver Neoplasms/prevention & control , rac1 GTP-Binding Protein/antagonists & inhibitors , Animals , Anticarcinogenic Agents/pharmacology , Carcinoma, Hepatocellular/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemoprevention , DNA/chemistry , Gene Expression Profiling , Humans , Immunoprecipitation , Lipids/chemistry , Liver Neoplasms/metabolism , Male , Rats , Rats, Wistar , Signal Transduction/drug effects , rac1 GTP-Binding Protein/metabolism
13.
Arch Toxicol ; 94(12): 3993-4005, 2020 12.
Article in English | MEDLINE | ID: mdl-32844245

ABSTRACT

Chronic exposure to inorganic arsenic is associated with a variety of adverse health effects, including lung, bladder, kidney, and liver cancer. Several mechanisms have been proposed for arsenic-induced tumorigenesis; however, insufficient knowledge and many unanswered questions remain to explain the integrated molecular pathogenesis of arsenic carcinogenicity. In the present study, using non-tumorigenic human liver HepaRG cells, we investigated epigenetic alterations upon prolonged exposure to a noncytotoxic concentration of sodium arsenite (NaAsO2). We demonstrate that continuous exposure of HepaRG cells to 1 µM sodium arsenite (NaAsO2) for 14 days resulted in substantial cytosine DNA demethylation and hypermethylation across the genome, among which the claudin 14 (CLDN14) gene was hypermethylated and the most down-regulated gene. Another important finding was a profound loss of histone H3 lysine 36 (H3K36) trimethylation, which was accompanied by increased damage to genomic DNA and an elevated de novo mutation frequency. These results demonstrate that continuous exposure of HepaRG cells to a noncytotoxic concentration of NaAsO2 results in substantial epigenetic abnormalities accompanied by several carcinogenesis-related events, including induction of epithelial-to-mesenchymal transition, damage to DNA, inhibition of DNA repair genes, and induction of de novo mutations. Importantly, this study highlights the intimate mechanistic link and interplay between two fundamental cancer-associated events, epigenetic and genetic alterations, in arsenic-associated carcinogenesis.


Subject(s)
Arsenites/toxicity , Cell Transformation, Neoplastic/chemically induced , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Hepatocytes/drug effects , Liver Neoplasms/chemically induced , Sodium Compounds/toxicity , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Claudins/genetics , Claudins/metabolism , DNA Damage , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic , Hepatocytes/metabolism , Hepatocytes/pathology , Histones/genetics , Histones/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mutation
14.
FASEB J ; 34(6): 7773-7785, 2020 06.
Article in English | MEDLINE | ID: mdl-32304142

ABSTRACT

Interindividual variability and sexual dimorphisms in the development of nonalcoholic fatty liver disease (NAFLD) are still poorly understood. In the present study, male and female strains of Collaborative Cross (CC) mice were fed a high-fat and high-sucrose (HF/HS) diet or a control diet for 12 weeks to investigate interindividual- and sex-specific variations in the development of NAFLD. The severity of liver steatosis varied between sexes and individual strains and was accompanied by an elevation of serum markers of insulin resistance, including increases in total cholesterol, low-density lipoproteins, high-density lipoproteins, phospholipids, and glucose. The development of NAFLD was associated with overexpression of the critical fatty acid uptake and de novo lipogenesis genes Pparg, Mogat1, Cd36, Acaab1, Fabp2, and Gdf15 in male and female mice. The expression of Pparg, Mogat1, and Cd36 was positively correlated with liver triglycerides in male mice, and Mogat1 and Cd36 expression were positively correlated with liver triglycerides in female mice. Our results indicate the value of CC mice in combination with HF/HS diet-induced alterations as an approach to study the susceptibility and interindividual variabilities in the pathogenesis of nonalcoholic fatty liver and early nonalcoholic steatohepatitis at the population level, uncovering of susceptible and resistant cohorts, and identifying sex-specific molecular determinants of disease susceptibility.


Subject(s)
Collaborative Cross Mice/physiology , Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/pathology , Animals , Collaborative Cross Mice/metabolism , Disease Models, Animal , Disease Susceptibility/metabolism , Disease Susceptibility/pathology , Fatty Acids/metabolism , Female , Insulin Resistance/physiology , Lipogenesis/physiology , Liver/metabolism , Liver/pathology , Male , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Obesity/pathology , Sex Factors , Triglycerides/metabolism
15.
Arch Toxicol ; 93(11): 3335-3344, 2019 11.
Article in English | MEDLINE | ID: mdl-31555880

ABSTRACT

The increasing number of man-made chemicals in the environment that may pose a carcinogenic risk emphasizes the need to develop reliable time- and cost-effective approaches for carcinogen detection. To address this issue, we have investigated the utility of human hepatocytes for the in vitro identification of genotoxic and non-genotoxic carcinogens. Induced pluripotent stem-cell (iPSC)-derived human hepatocytes were treated with the genotoxic carcinogens aflatoxin B1 (AFB1) and benzo[a]pyrene (B[a]P), the non-genotoxic liver carcinogen methapyrilene, and the non-carcinogens aflatoxin B2 (AFB2) and benzo[e]pyrene (B[e]P) at non-cytotoxic concentrations for 7 days, and transcriptomic and DNA methylation profiles were examined. 1569, 1693, and 2061 differentially expressed genes (DEGs) were detected in cells treated with AFB1, B[a]P, and methapyrilene, respectively, whereas no DEGs were found in cells treated with AFB2 or B[e]P. In contrast to the profound cellular transcriptomic responses, exposure of iPSC-derived hepatocytes to the test chemicals resulted in minor random alterations in global DNA methylome, most of which were not associated with changes in gene expression. Overall, our results demonstrate that the major non-genotoxic effect of exposure to carcinogens, regardless of their mode of action, is a profound global transcriptomic response rather than global DNA methylome alterations, indicating the significance of transcriptomic alterations as an informative endpoint in short-term in vitro carcinogen testing.


Subject(s)
Carcinogens/toxicity , Cytosine/metabolism , DNA Methylation/drug effects , Hepatocytes/drug effects , Induced Pluripotent Stem Cells/drug effects , Transcriptome/drug effects , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Dose-Response Relationship, Drug , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Transcriptome/genetics
16.
Front Genet ; 10: 486, 2019.
Article in English | MEDLINE | ID: mdl-31191608

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most aggressive human cancers. HCC is characterized by an acquisition of multiple abnormal phenotypes driven by genetic and epigenetic alterations, especially abnormal DNA methylation. Most of the existing clinical and experimental reports provide only a snapshot of abnormal DNA methylation patterns in HCC rather than their dynamic changes. This makes it difficult to elucidate the significance of these changes in the development of HCC. In the present study, we investigated hepatic gene expression and gene-specific DNA methylation alterations in mice using the Stelic Animal Model (STAM) of non-alcoholic steatohepatitis (NASH)-derived liver carcinogenesis. Analysis of the DNA methylation status in aberrantly expressed epigenetically regulated genes showed the accumulation of DNA methylation abnormalities during the development of HCC, with the greatest number of aberrantly methylated genes being found in full-fledged HCC. Among these genes, only one gene, tubulin, beta 2B class IIB (Tubb2b), was increasingly hypomethylated and over-expressed during the progression of the carcinogenic process. Furthermore, the TUBB2B gene was also over-expressed and hypomethylated in poorly differentiated human HepG2 cells as compared to well-differentiated HepaRG cells. The results of this study indicate that unique gene-expression alterations mediated by aberrant DNA methylation of selective genes may contribute to the development of HCC and may have diagnostic value as the disease-specific indicator.

17.
Toxicol Sci ; 170(2): 273-282, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31086990

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is becoming a major etiological risk factor for hepatocellular carcinoma (HCC) in the United States and other Western countries. In this study, we investigated the role of gene-specific promoter cytosine DNA methylation and gene expression alterations in the development of NAFLD-associated HCC in mice using (1) a diet-induced animal model of NAFLD, (2) a Stelic Animal Model of nonalcoholic steatohepatitis-derived HCC, and (3) a choline- and folate-deficient (CFD) diet (CFD model). We found that the development of NAFLD and its progression to HCC was characterized by down-regulation of glycine N-methyltransferase (Gnmt) and this was mediated by progressive Gnmt promoter cytosine DNA hypermethylation. Using a panel of genetically diverse inbred mice, we observed that Gnmt down-regulation was an early event in the pathogenesis of NAFLD and correlated with the extent of the NAFLD-like liver injury. Reduced GNMT expression was also found in human HCC tissue and liver cancer cell lines. In in vitro experiments, we demonstrated that one of the consequences of GNMT inhibition was an increase in genome methylation facilitated by an elevated level of S-adenosyl-L-methionine. Overall, our findings suggest that reduced Gnmt expression caused by promoter hypermethylation is one of the key molecular events in the development of NAFLD-derived HCC and that assessing Gnmt methylation level may be useful for disease stratification.


Subject(s)
Carcinoma, Hepatocellular/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Glycine N-Methyltransferase/genetics , Liver Neoplasms/genetics , Non-alcoholic Fatty Liver Disease/complications , Animals , Carcinogenesis , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic
18.
Chem Res Toxicol ; 32(5): 887-898, 2019 05 20.
Article in English | MEDLINE | ID: mdl-30990016

ABSTRACT

Metabolism of 1,3-butadiene, a known human and rodent carcinogen, results in formation of reactive epoxides, a key event in its carcinogenicity. Although mice exposed to 1,3-butadiene present DNA adducts in all tested tissues, carcinogenicity is limited to liver, lung, and lymphoid tissues. Previous studies demonstrated that strain- and tissue-specific epigenetic effects in response to 1,3-butadiene exposure may influence susceptibly to DNA damage and serve as a potential mechanism of tissue-specific carcinogenicity. This study aimed to investigate interindividual variability in the effects of 1,3-butadiene using a population-based mouse model. Male mice from 20 Collaborative Cross strains were exposed to 0 or 635 ppm 1,3-butadiene by inhalation (6 h/day, 5 days/week) for 2 weeks. We evaluated DNA damage and epigenetic effects in target (lung and liver) and nontarget (kidney) tissues of 1,3-butadiene-induced carcinogenesis. DNA damage was assessed by measuring N-7-(2,3,4-trihydroxybut-1-yl)-guanine (THB-Gua) adducts. To investigate global histone modification alterations, we evaluated the trimethylation and acetylation of histones H3 and H4 across tissues. Changes in global cytosine DNA methylation were evaluated from the levels of methylation of LINE-1 and SINE B1 retrotransposons. We quantified the degree of variation across strains, deriving a chemical-specific human variability factor to address population variability in carcinogenic risk, which is largely ignored in current cancer risk assessment practice. Quantitative trait locus mapping identified four candidate genes related to chromatin remodeling whose variation was associated with interstrain susceptibility. Overall, this study uses 1,3-butadiene to demonstrate how the Collaborative Cross mouse population can be used to identify the mechanisms for and quantify the degree of interindividual variability in tissue-specific effects that are relevant to chemically induced carcinogenesis.


Subject(s)
Butadienes/toxicity , DNA Adducts/metabolism , Epigenesis, Genetic/drug effects , Animals , Carcinogens, Environmental/toxicity , DNA Adducts/chemistry , DNA Adducts/genetics , DNA Methylation/drug effects , Guanine/analogs & derivatives , Guanine/chemistry , Histones/metabolism , Kidney/drug effects , Liver/drug effects , Lung/drug effects , Male , Mice , Mutagens/toxicity
19.
Arch Toxicol ; 93(5): 1433-1448, 2019 05.
Article in English | MEDLINE | ID: mdl-30788552

ABSTRACT

In vitro genotoxicity testing that employs metabolically active human cells may be better suited for evaluating human in vivo genotoxicity than current bacterial or non-metabolically active mammalian cell systems. In the current study, 28 compounds, known to have different genotoxicity and carcinogenicity modes of action (MoAs), were evaluated over a wide range of concentrations for the ability to induce DNA damage in human HepG2 and HepaRG cells. DNA damage dose-responses in both cell lines were quantified using a combination of high-throughput high-content (HTHC) CometChip technology and benchmark dose (BMD) quantitative approaches. Assays of metabolic activity indicated that differentiated HepaRG cells had much higher levels of cytochromes P450 activity than did HepG2 cells. DNA damage was observed for four and two out of five indirect-acting genotoxic carcinogens in HepaRG and HepG2 cells, respectively. Four out of seven direct-acting carcinogens were positive in both cell lines, with two of the three negatives being genotoxic mainly through aneugenicity. The four chemicals positive in both cell lines generated HTHC Comet data in HepaRG and HepG2 cells with comparable BMD values. All the non-genotoxic compounds, including six non-genotoxic carcinogens, were negative in HepaRG cells; five genotoxic non-carcinogens also were negative. Our results indicate that the HTHC CometChip assay detects a greater proportion of genotoxic carcinogens requiring metabolic activation (i.e., indirect carcinogens) when conducted with HepaRG cells than with HepG2 cells. In addition, BMD genotoxicity potency estimate is useful for quantitatively evaluating CometChip assay data in a scientifically rigorous manner.


Subject(s)
Carcinogens/toxicity , Comet Assay/methods , DNA Damage/drug effects , Mutagens/toxicity , Carcinogens/administration & dosage , Cell Line , Cytochrome P-450 Enzyme System/metabolism , Dose-Response Relationship, Drug , Hep G2 Cells , High-Throughput Screening Assays/methods , Humans , Mutagens/administration & dosage
20.
Chem Res Toxicol ; 32(5): 869-877, 2019 05 20.
Article in English | MEDLINE | ID: mdl-30807115

ABSTRACT

Acrylamide has been classified as a "Group 2A carcinogen" (probably carcinogenic to humans) by the International Agency for Research on Cancer. The carcinogenicity of acrylamide is attributed to its well-recognized genotoxicity. In the present study, we investigated the effect of acrylamide on epigenetic alterations in mice. Female B6C3F1 mice received acrylamide in drinking water for 28 days, at doses previously used in a 2 year cancer bioassay (0, 0.0875, 0.175, 0.35, and 0.70 mM), and the genotoxic and epigenetic effects were investigated in lungs, a target organ for acrylamide carcinogenicity, and livers, a nontarget organ. Acrylamide exposure resulted in a dose-dependent formation of N7-(2-carbamoyl-2-hydroxyethyl)guanine and N3-(2-carbamoyl-2-hydroxyethyl)adenine in liver and lung DNA. In contrast, the profiles of global epigenetic alterations differed between the two tissues. In the lungs, acrylamide exposure resulted in a decrease of histone H4 lysine 20 trimethylation (H4K20me3), a common epigenetic feature of human cancer, while in the livers, there was increased acetylation of histone H3 lysine 27 (H3K27ac), a gene transcription activating mark. Treatment with 0.70 mM acrylamide also resulted in substantial alterations in the DNA methylation and whole transcriptome in the lungs and livers; however, there were substantial differences in the trends of DNA methylation and gene expression changes between the two tissues. Analysis of differentially expressed genes showed a marked up-regulation of genes and activation of the gene transcription regulation pathway in livers, but not lungs. This corresponded to increased histone H3K27ac and DNA hypomethylation in livers, in contrast to hypermethylation and transcription silencing in lungs. Our results demonstrate that acrylamide induced global epigenetic alterations independent of its genotoxic effects, suggesting that epigenetic events may determine the organ-specific carcinogenicity of acrylamide. Additionally this study provides strong support for the importance of epigenetic alterations, in addition to genotoxic events, in the mechanism of carcinogenesis induced by genotoxic chemical carcinogens.


Subject(s)
Acrylamide/toxicity , DNA Adducts/metabolism , Liver/drug effects , Lung/drug effects , Mutagens/toxicity , Water Pollutants, Chemical/toxicity , Acrylamide/administration & dosage , Adenine/analogs & derivatives , Adenine/chemistry , Administration, Oral , Animals , Carcinogens/administration & dosage , Carcinogens/toxicity , DNA Adducts/chemistry , DNA Adducts/genetics , Epigenesis, Genetic/drug effects , Female , Guanine/analogs & derivatives , Guanine/chemistry , Histones/chemistry , Histones/genetics , Histones/metabolism , Methylation/drug effects , Mice , Mutagens/administration & dosage , Water Pollutants, Chemical/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...