Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Methods ; 190: 106346, 2021 11.
Article in English | MEDLINE | ID: mdl-34637818

ABSTRACT

Antimicrobial resistance is a current global health crisis, and the increasing emergence of multidrug resistant infections has led to the resurgent interest in bacteriophages as an alternative treatment. Prior to clinical application, phage suitability is assessed, via susceptibility testing and breadth of host range to bacteriophage, however, these are both large-scale manual processes and labor-intensive. The aim of the study was to establish and validate a scaled down methodology for high-throughput screening to reduce procedural footprint. In this paper, we describe a scaled-down adapted methodology that can successfully screen bacteriophages, isolated and purified from wastewater samples. Furthermore, we describe a miniaturized host range assay against clinical Pseudomonas aeruginosa isolates using a spot test (2 µL/ drop) that was found to be both sensitive (94.6%) and specific (94.7%). It also demonstrated a positive predictive value (PPV) of 86.4% and negative predictive value (NPV) of 98%. The breadth of host range of bacteriophages that exhibited lytic activity on P. aeruginosa isolates was corroborated using the scaled down assay. The high correlation achieved in this study confirms miniaturization as the first step in future automation that could test phage diversity and efficacy as antimicrobials.


Subject(s)
Bacteriophages/isolation & purification , Bacteriophages/physiology , High-Throughput Screening Assays/methods , Host Specificity , Pseudomonas aeruginosa/virology , Wastewater/virology , Anti-Bacterial Agents , DNA, Viral , Drug Resistance, Multiple, Bacterial , Humans , Phage Therapy , Pseudomonas Infections/microbiology , Sensitivity and Specificity
2.
PLoS One ; 12(4): e0173738, 2017.
Article in English | MEDLINE | ID: mdl-28437435

ABSTRACT

BACKGROUND: Human respiratory syncytial virus (RSV) remains the most common cause of severe lower respiratory tract disease amongst infants, and continues to cause annual epidemics of respiratory disease every winter worldwide. Demonstrating placental transmission of viable RSV in human samples is a major paradigm shift in respiratory routes considered likely for RSV transmission. METHODS: Droplet digital PCR (ddPCR) was used to identify RSV present in cord blood mononucleocytes (CBM). CBMs testing positive for RSV were treated with phytohemagglutinin (PHA), PHA and nitric oxide (NO) or PHA, NO and palivizumab, and co-cultured with HeLa cell monolayers. Subsequent immuno-staining for RSV was used to visualize infective viral plaques. RESULTS: RSV was detected in 26 of 45 samples (57.7%) by ddPCR. CBM's collected in winter were more likely to test positive for RSV (17/21 samples, risk = 80%, OR = 7.08; 95% CI 1.80-27.80; p = 0.005) compared to non-winter months (9/24 samples, 37.5%). RSV plaques were observed in non-treated and treated co-cultured HeLa monolayers. CONCLUSIONS: Demonstrating active RSV in CBMs suggests in utero transmission of infective virus to the fetus without causing overt disease. This is likely to have an important impact on immune development as well as future virus-host interactions, thereby warranting further investigation.


Subject(s)
Fetal Blood/virology , Infectious Disease Transmission, Vertical , Respiratory Syncytial Virus Infections/transmission , Respiratory Syncytial Virus, Human/isolation & purification , Seasons , Adolescent , Adult , Female , Humans , Middle Aged , Respiratory Syncytial Virus Infections/virology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...