Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 54(7): 963-975, 2022 07.
Article in English | MEDLINE | ID: mdl-35773407

ABSTRACT

The consensus molecular subtype (CMS) classification of colorectal cancer is based on bulk transcriptomics. The underlying epithelial cell diversity remains unclear. We analyzed 373,058 single-cell transcriptomes from 63 patients, focusing on 49,155 epithelial cells. We identified a pervasive genetic and transcriptomic dichotomy of malignant cells, based on distinct gene expression, DNA copy number and gene regulatory network. We recapitulated these subtypes in bulk transcriptomes from 3,614 patients. The two intrinsic subtypes, iCMS2 and iCMS3, refine CMS. iCMS3 comprises microsatellite unstable (MSI-H) cancers and one-third of microsatellite-stable (MSS) tumors. iCMS3 MSS cancers are transcriptomically more similar to MSI-H cancers than to other MSS cancers. CMS4 cancers had either iCMS2 or iCMS3 epithelium; the latter had the worst prognosis. We defined the intrinsic epithelial axis of colorectal cancer and propose a refined 'IMF' classification with five subtypes, combining intrinsic epithelial subtype (I), microsatellite instability status (M) and fibrosis (F).


Subject(s)
Colorectal Neoplasms , Neoplasms, Glandular and Epithelial , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial Cells/pathology , Humans , Microsatellite Instability , Microsatellite Repeats/genetics , Neoplasms, Glandular and Epithelial/genetics , Transcriptome/genetics
2.
Nat Commun ; 12(1): 2229, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33850132

ABSTRACT

Profiling of circulating tumor DNA (ctDNA) may offer a non-invasive approach to monitor disease progression. Here, we develop a quantitative method, exploiting local tissue-specific cell-free DNA (cfDNA) degradation patterns, that accurately estimates ctDNA burden independent of genomic aberrations. Nucleosome-dependent cfDNA degradation at promoters and first exon-intron junctions is strongly associated with differential transcriptional activity in tumors and blood. A quantitative model, based on just 6 regulatory regions, could accurately predict ctDNA levels in colorectal cancer patients. Strikingly, a model restricted to blood-specific regulatory regions could predict ctDNA levels across both colorectal and breast cancer patients. Using compact targeted sequencing (<25 kb) of predictive regions, we demonstrate how the approach could enable quantitative low-cost tracking of ctDNA dynamics and disease progression.


Subject(s)
Cell-Free Nucleic Acids/metabolism , Circulating Tumor DNA/metabolism , DNA Fragmentation , Tumor Burden/physiology , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Genomics , Humans , Mutation
3.
Vaccine ; 38(6): 1286-1290, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31924429

ABSTRACT

The H9N2 avian influenza viruses cause significant economic losses in poultry worldwide and could potentially cause human pandemic. Currently, the available vaccines have limited efficacy due to antigenic drift of H9N2. To improve vaccine efficacy, we developed monovalent vaccine strain via the modification of neutralizing epitopes on hemagglutinin (HA) to broaden the protection against H9N2 viruses. In this study, single and multiple mutation were introduced to amino acid at position 148, 150 (site I) and 183, 186, 188 (site II) on the full-length HA gene of H9N2 strain (A/Hong Kong/33982/2009). These mutant HA constructs were displayed on the baculovirus surface (BacH9), and evaluated for their cross-protective efficacy against H9N2 viruses in a mouse model. Our findings indicate that mice immunized with multiple BacH9 mutant constructs (148-150 183 and 186) induced cross-protective immunity against circulating H9N2 in the viral challenge study and prove to be a promising vaccine candidate for H9N2.


Subject(s)
Cross Protection , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H9N2 Subtype , Influenza Vaccines/immunology , Influenza in Birds/prevention & control , Animals , Antibodies, Viral/immunology , Chickens , Epitopes/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/immunology , Influenza Vaccines/genetics , Mice , Mutation , Orthomyxoviridae Infections/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL