Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; : e202400270, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837531

ABSTRACT

NMR spectroscopy studies using parahydrogen-induced polarization have previously established the existence of the pairwise hydrogen addition route in the hydrogenation of unsaturated hydrocarbons over heterogeneous catalysts, including those based on rhodium (Rh0). This pathway requires the incorporation of both hydrogen atoms from one hydrogen molecule to the same product molecule. However, the underlying mechanism for such pairwise hydrogen addition must be better understood. The involvement of carbon, either in the form of carbonaceous deposits on the surface of a catalyst or as a metal carbide phase, is known to modify catalytic properties significantly and thus could also affect the pairwise hydrogen addition route. Here, we explored carbon's role by studying the hydrogenation of propene and propyne with parahydrogen on a Rh2C catalyst and comparing the results with those for a Rh0/C catalyst obtained from Rh2C via H2 pretreatment. While the catalysts Rh2C and Rh0/C differ notably in the rate of conversion of parahydrogen to normal hydrogen as well as in terms of hydrogenation activity, our findings suggest that the carbide phase does not play a significant role in the pairwise H2 addition route on rhodium catalysts.

2.
Chemphyschem ; : e202400209, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38863367

ABSTRACT

This study reveals that, when two hydrogen atoms are produced on the surface of a catalyst (e. g., a metal nanoparticle) upon dissociation of a parahydrogen molecule, their initial nuclear spin correlation can propagate in a branching-chain fashion as they diffuse and combine with random H atoms to produce H2 molecules, which subsequently dissociate. This process leads to a gradual dilution of the non-equilibrium nuclear spin order, but the number of involved H atoms that share the spin order becomes larger. These conclusions, confirmed by the spin density matrix calculations, may be relevant in the context of parahydrogen-induced polarization (PHIP) in heterogeneous hydrogenations catalyzed by supported metal catalysts, the observation of which apparently contradicts the accepted non-pairwise mechanism of the addition of hydrogen to an unsaturated substrate over such catalysts. The potential consequences of the reported findings are discussed in the context of PHIP effects and beyond.

3.
Chemphyschem ; 22(14): 1421-1440, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33969590

ABSTRACT

Parahydrogen-induced polarization with heterogeneous catalysts (HET-PHIP) has been a subject of extensive research in the last decade since its first observation in 2007. While NMR signal enhancements obtained with such catalysts are currently below those achieved with transition metal complexes in homogeneous hydrogenations in solution, this relatively new field demonstrates major prospects for a broad range of advanced fundamental and practical applications, from providing catalyst-free hyperpolarized fluids for biomedical magnetic resonance imaging (MRI) to exploring mechanisms of industrially important heterogeneous catalytic processes. This review covers the evolution of the heterogeneous catalysts used for PHIP observation, from metal complexes immobilized on solid supports to bulk metals and single-atom catalysts and discusses the general visions for maximizing the obtained NMR signal enhancements using HET-PHIP. Various practical applications of HET-PHIP, both for catalytic studies and for potential production of hyperpolarized contrast agents for MRI, are described.

4.
Faraday Discuss ; 229: 161-175, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33720219

ABSTRACT

The selectivity of product formation is strongly correlated with the nature of the catalyst active centers. Therefore, the selective synthesis of active sites with certain structure is a big challenge in modern catalysis. Here synthetic procedures are adopted for the formation of 1% Rh/TiO2 catalysts with different properties. It is shown that the nature of the precursor used for catalyst preparation is important, and that the use of a solution of rhodium acetate instead of rhodium nitrate leads to the selective formation of butenes during 1,3-butadiene hydrogenation. The use of parahydrogen in the reaction results in the enhancement of NMR signals via parahydrogen-induced polarization (PHIP) for all synthesized catalysts, and this signal enhancement increases with increasing catalyst calcination temperature. This effect is explained by the decoration of rhodium nanoparticles with titania which restricts hydrogen mobility on the surface, leading to the highest reported to date selectivity toward the pairwise hydrogen addition route of 7% for supported metal catalysts.

5.
J Magn Reson ; 316: 106755, 2020 07.
Article in English | MEDLINE | ID: mdl-32512397

ABSTRACT

We present a pilot quality assurance (QA) study of spin-exchange optical pumping (SEOP) performed on two nearly identical second-generation (GEN-2) automated batch-mode clinical-scale 129Xe hyperpolarizers, each utilizing a convective forced air oven, high-power (~170 W) continuous pump laser irradiation, and xenon-rich gas mixtures (~1.30 atm partial pressure). In one study, the repeatability of SEOP in a 1000 Torr Xe/900 Torr N2/100 Torr 4He (2000 Torr total pressure) gas mixture is evaluated over the course of ~700 gas loading cycles, with negligible decrease in performance during the first ~200 cycles, and with high 129Xe polarization levels (avg. %PXe = 71.7% with standard deviation σPXe = 1.5%), build-up rates (avg. γSEOP = 0.019 min-1 with standard deviation σγ = 0.003 min-1) and polarization lifetimes (avg. T1 = 90.5 min with standard deviation σT = 10.3 min) reported at moderate oven temperature of ~70 °C. Although the SEOP cell in this study exhibited a detectable performance decrease after 400 cycles, the cell continued to produce potentially useable HP 129Xe with %PXe = 42.3 ± 0.6% even after nearly 700 refill cycles. The possibility of "regenerating" "dormant" (i.e., not used for an extended period of time) SEOP cells using repeated temperature cycling methods to recover %PXe is also demonstrated. The quality and consistency of results show significant promise for translation to clinical-scale production of hyperpolarized 129Xe contrast agents for imaging and bio-sensing applications.

6.
J Magn Reson ; 315: 106739, 2020 06.
Article in English | MEDLINE | ID: mdl-32408239

ABSTRACT

We present studies of spin-exchange optical pumping (SEOP) using ternary xenon-nitrogen-helium gas mixtures at high xenon partial pressures (up to 1330 Torr partial pressure at loading, out of 2660 Torr total pressure) in a 500-mL volume SEOP cell, using two automated batch-mode clinical-scale 129Xe hyperpolarizers operating under continuous high-power (~170 W) pump laser irradiation. In this pilot study, we explore SEOP in gas mixtures with up to 45% 4He content under a wide range of experimental conditions. When an aluminum jacket cooling/heating design was employed (GEN-3 hyperpolarizer), 129Xe polarization (%PXe) of 55.9 ± 0.9% was observed with mono-exponential build-up rate γSEOP of 0.049 ± 0.001 min-1 for the 4He-rich mixture (1000 Torr Xe/900 Torr He, 100 Torr N2), compared to %PXe of 49.3 ± 3.3% at γSEOP of 0.035 ± 0.004 min-1 for the N2-rich gas mixture (1000 Torr Xe/100 Torr He, 900 Torr N2). When forced-air cooling/heating was used (GEN-2 hyperpolarizer), %PXe of 83.9 ± 2.7% was observed at γSEOP of 0.045 ± 0.005 min-1 for the 4He-rich mixture (1000 Torr Xe/900 Torr He, 100 Torr N2), compared to %PXe of 73.5 ± 1.3% at γSEOP of 0.028 ± 0.001 min-1 for the N2-rich gas mixture (1000 Torr Xe and 1000 Torr N2). Additionally, %PXe of 72.6 ± 1.4% was observed at a build-up rate γSEOP of 0.041 ± 0.003 min-1 for a super-high-density 4He-rich mixture (1330 Torr Xe/1200 Torr 4He/130 Torr N2), compared to %PXe = 56.6 ± 1.3% at a build-up rate of γSEOP of 0.034 ± 0.002 min-1 for an N2-rich mixture (1330 Torr Xe/1330 Torr N2) using forced air cooling/heating. The observed SEOP hyperpolarization performance under these conditions corresponds to %PXe improvement by a factor of 1.14 ± 0.04 at 1000 Torr Xe density and by up to a factor of 1.28 ± 0.04 at 1330 Torr Xe density at improved SEOP build-up rates by factors of 1.61 ± 0.18 and 1.21 ± 0.11 respectively. Record %PXe levels have been obtained here: 83.9 ± 2.7% at 1000 Torr Xe partial pressure and 72.6 ± 1.4% at 1330 Torr Xe partial pressure. In addition to improved thermal stability for SEOP, the use of 4He-rich gas mixtures also reduces the overall density of produced inhalable HP contrast agents; this property may be desirable for HP 129Xe inhalation by human subjects in clinical settings-especially in populations with heavily impaired lung function. The described approach should enjoy ready application in the production of inhalable 129Xe contrast agent with near-unity 129Xe nuclear spin polarization.

7.
Phys Chem Chem Phys ; 21(48): 26477-26482, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31776540

ABSTRACT

Parahydrogen-induced polarization (PHIP) is a powerful technique for studying hydrogenation reactions in gas and liquid phases. Pairwise addition of parahydrogen to the hydrogenation substrate imparts nuclear spin order to reaction products, manifested as enhanced 1H NMR signals from the nascent proton sites. Nanoscale metal catalysts immobilized on supports comprise a promising class of catalysts for producing PHIP effects; however, on such catalysts the percentage of substrates undergoing the pairwise addition route-a necessary condition for observing PHIP-is usually low. In this paper, we present a systematic study of several metal catalysts (Rh, Pt, Pd, and Ir) supported on TiO2 in liquid-phase hydrogenation of different prototypical phenylalkynes (phenylacetylene, 1-phenyl-1-propyne, and 3-phenyl-1-propyne) with parahydrogen. Catalyst activity and selectivity were found to be affected by both the nature of the active metal and the percentage of metal loading. It was demonstrated that the optimal catalyst for production of hyperpolarized products is Rh/TiO2 with 4 wt% metal loading, whereas Pd/TiO2 provided the greatest selectivity for semihydrogenation of phenylalkynes. In a study of liquid-phase hydrogenation reaction kinetics, it was shown that reaction order with respect to hydrogen is nearly the same for pairwise and non-pairwise H2 addition-consistent with a similar nature of the catalytically active sites for these reaction pathways.

8.
Chem Asian J ; 2018 May 23.
Article in English | MEDLINE | ID: mdl-29790649

ABSTRACT

The intensity of NMR signals can be enhanced by several orders of magnitude by using various techniques for the hyperpolarization of different molecules. Such approaches can overcome the main sensitivity challenges facing modern NMR/magnetic resonance imaging (MRI) techniques, whilst hyperpolarized fluids can also be used in a variety of applications in material science and biomedicine. This Focus Review considers the fundamentals of the preparation of hyperpolarized liquids and gases by using dissolution dynamic nuclear polarization (d-DNP) and parahydrogen-based techniques, such as signal amplification by reversible exchange (SABRE) and parahydrogen-induced polarization (PHIP), in both heterogeneous and homogeneous processes. The various new aspects in the formation and utilization of hyperpolarized fluids, along with the possibility of observing NMR signal enhancement, are described.

SELECTION OF CITATIONS
SEARCH DETAIL
...