Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
J. physiol. biochem ; 79(2): 397-413, may. 2023.
Article in English | IBECS | ID: ibc-222551

ABSTRACT

Obesity is a major contributor to the silent and progressive development of type 2 diabetes (T2D) whose prevention could be improved if individuals at risk were identified earlier. Our aim is to identify early phenotypes that precede T2D in diet-induced obese minipigs. We fed four groups of minipigs (n = 5–10) either normal-fat or high-fat high-sugar diet during 2, 4, or 6 months. Morphometric features were recorded, and metabolomics and clinical parameters were assessed on fasting plasma samples. Multivariate statistical analysis on 46 morphometrical and clinical parameters allowed to differentiate 4 distinct phenotypes: NFC (control group) and three others (HF2M, HF4M, HF6M) corresponding to the different stages of the obesity progression. Compared to NFC, we observed a rapid progression of body weight and fat mass (4-, 7-, and tenfold) in obese phenotypes. Insulin resistance (IR; 2.5-fold increase of HOMA-IR) and mild dyslipidemia (1.2- and twofold increase in total cholesterol and HDL) were already present in the HF2M and remained stable in HF4M and HF6M. Plasma metabolome revealed subtle changes of 23 metabolites among the obese groups, including a progressive switch in energy metabolism from amino acids to lipids, and a transient increase in de novo lipogenesis and TCA-related metabolites in HF2M. Low anti-oxidative capacities and anti-inflammatory response metabolites were found in the HF4M, and a perturbed hexose metabolism was observed in HF6M. Overall, we show that IR and progressively obese minipigs reveal phenotype-specific metabolomic signatures for which some of the identified metabolites could be considered as potential biomarkers of early progression to TD2. (AU)


Subject(s)
Animals , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance , Insulin/metabolism , Metabolomics , Obesity/metabolism , Swine, Miniature/metabolism
2.
J Proteome Res ; 22(4): 1201-1212, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36961365

ABSTRACT

Nutritional biomarkers of dairy intake can be affected by both food transformation and the metabolic status of the consumer. To assess these effects, this study investigated the serum volatilome of 14 young (YA) and 14 older (OA) adult men undergoing a 3 week restriction of dairy and fermented foods followed by a randomized crossover acute intake of milk and yogurt. 3,5-Dimethyl-octan-2-one was identified as a potential marker of dairy product intake as its response after both milk and yogurt intake was significantly increased during the postprandial phase but significantly decreased in fasting serum samples of the OA group after the restriction phase. The postprandial response of two metabolites was significantly different for the two dairy products while 19 metabolites were modulated by age. Remarkably, the response of all age-dependent metabolites was higher in the OA than in the YA group after milk or yogurt intake, whereas at the end of the restriction phase, their fasting concentrations were lower in the OA than in the YA group. Among these, p-cresol, a specific marker of colonic protein fermentation, had a significant response in the OA but not the YA group, which may suggest impaired intestinal processing of dietary proteins in the OA group.


Subject(s)
Milk , Yogurt , Male , Humans , Aged , Animals , Cross-Over Studies , Biomarkers
3.
Curr Opin Clin Nutr Metab Care ; 26(2): 189-194, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36892966

ABSTRACT

PURPOSE OF REVIEW: An increase in the plant-based characteristics of the diet is now recommended for human and planetary health. There is growing evidence that plant protein (PP) intake has beneficial effects on cardiometabolic risk. However, proteins are not consumed isolated and the protein package (lipid species, fiber, vitamins, phytochemicals, etc) may contribute, besides the protein effects per se, to explain the beneficial effects associated with PP-rich diets. RECENT FINDINGS: Recent studies have shown the potential of nutrimetabolomics to apprehend the complexity of both the human metabolism and the dietary habits, by providing signatures associated to the consumption of PP-rich diets. Those signatures comprised an important proportion of metabolites that were representative of the protein package, including specific amino acids (branched-chain amino acids and their derivates, glycine, lysine), but also lipid species (lysophosphatidylcholine, phosphatidylcholine, plasmalogens) and polyphenol metabolites (catechin sulfate, conjugated valerolactones and phenolic acids). SUMMARY: Further studies are needed to go deeper in the identification of all metabolites making part of the specific metabolomic signatures, associated to the large range of protein package constituents and their effects on the endogenous metabolism, rather than to the protein fraction itself. The objective is to determine the bioactive metabolites, as well as the modulated metabolic pathways and the mechanisms responsible for the observed effects on cardiometabolic health.


Subject(s)
Amino Acids , Cardiovascular Diseases , Humans , Plant Proteins , Metabolomics , Cardiovascular Diseases/prevention & control , Lipids
4.
J Nutr ; 153(3): 645-656, 2023 03.
Article in English | MEDLINE | ID: mdl-36931747

ABSTRACT

BACKGROUND: Plant proteins (PPs) have been associated with better cardiovascular health than animal proteins (APs) in epidemiological studies. However, the underlying metabolic mechanisms remain mostly unknown. OBJECTIVES: Using a combination of cutting-edge isotopic methods, we aimed to better characterize the differences in protein and energy metabolisms induced by dietary protein sources (PP compared with AP) in a prudent or western dietary context. METHODS: Male Wistar rats (n = 44, 8 wk old) were fed for 4.5 mo with isoproteic diets differing in their protein isolate sources, either AP (100% milk) or PP (50%:50% pea: wheat) and being normal (NFS) or high (HFS) in sucrose (6% or 15% kcal) and saturated fat (7% or 20% kcal), respectively. We measured body weight and composition, hepatic enzyme activities and lipid content, and plasma metabolites. In the intestine, liver, adipose tissues, and skeletal muscles, we concomitantly assessed the extent of amino acid (AA) trafficking using a 15N natural abundance method, the rates of macronutrient routing to dispensable AA using a 13C natural abundance method, and the metabolic fluxes of protein synthesis (PS) and de novo lipogenesis using a 2H labeling method. Data were analyzed using ANOVA and Mixed models. RESULTS: At the whole-body level, PP limited HFS-induced insulin resistance (-27% in HOMA-IR between HFS groups, P < 0.05). In the liver, PP induced lower lipid content (-17%, P < 0.01) and de novo lipogenesis (-24%, P < 0.05). In the different tissues studied, PP induced higher AA transamination accompanied by higher routings of dietary carbohydrates and lipids toward dispensable AA synthesis by glycolysis and ß-oxidation, resulting in similar tissue PS and protein mass. CONCLUSIONS: In growing rats, compared with AP, a balanced blend of PP similarly supports protein anabolism while better limiting whole-body and tissue metabolic dysregulations through mechanisms related to their less optimal AA profile for direct channeling to PS.


Subject(s)
Pea Proteins , Rats , Animals , Pea Proteins/metabolism , Milk Proteins/pharmacology , Milk Proteins/metabolism , Triticum , Sucrose , Diet, High-Fat , Rats, Wistar , Liver/metabolism , Amino Acids/metabolism , Dietary Proteins/metabolism , Lipids
5.
Crit Rev Food Sci Nutr ; 63(32): 11185-11210, 2023.
Article in English | MEDLINE | ID: mdl-35730212

ABSTRACT

Impairment of gut function is one of the explanatory mechanisms of health status decline in elderly population. These impairments involve a decline in gut digestive physiology, metabolism and immune status, and associated to that, changes in composition and function of the microbiota it harbors. Continuous deteriorations are generally associated with the development of systemic dysregulations and ultimately pathologies that can worsen the initial health status of individuals. All these alterations observed at the gut level can then constitute a wide range of potential targets for development of nutritional strategies that can impact gut tissue or associated microbiota pattern. This can be key, in a preventive manner, to limit gut functionality decline, or in a curative way to help maintaining optimum nutrients bioavailability in a context on increased requirements, as frequently observed in pathological situations. The aim of this review is to give an overview on the alterations that can occur in the gut during aging and lead to the development of altered function in other tissues and organs, ultimately leading to the development of pathologies. Subsequently is discussed how nutritional strategies that target gut tissue and gut microbiota can help to avoid or delay the occurrence of aging-related pathologies.


Subject(s)
Gastrointestinal Microbiome , Metabolic Diseases , Microbiota , Humans , Aged , Aging/physiology , Metabolic Diseases/prevention & control , Gastrointestinal Microbiome/physiology , Nutritive Value
6.
J Physiol Biochem ; 79(2): 397-413, 2023 May.
Article in English | MEDLINE | ID: mdl-36574151

ABSTRACT

Obesity is a major contributor to the silent and progressive development of type 2 diabetes (T2D) whose prevention could be improved if individuals at risk were identified earlier. Our aim is to identify early phenotypes that precede T2D in diet-induced obese minipigs. We fed four groups of minipigs (n = 5-10) either normal-fat or high-fat high-sugar diet during 2, 4, or 6 months. Morphometric features were recorded, and metabolomics and clinical parameters were assessed on fasting plasma samples. Multivariate statistical analysis on 46 morphometrical and clinical parameters allowed to differentiate 4 distinct phenotypes: NFC (control group) and three others (HF2M, HF4M, HF6M) corresponding to the different stages of the obesity progression. Compared to NFC, we observed a rapid progression of body weight and fat mass (4-, 7-, and tenfold) in obese phenotypes. Insulin resistance (IR; 2.5-fold increase of HOMA-IR) and mild dyslipidemia (1.2- and twofold increase in total cholesterol and HDL) were already present in the HF2M and remained stable in HF4M and HF6M. Plasma metabolome revealed subtle changes of 23 metabolites among the obese groups, including a progressive switch in energy metabolism from amino acids to lipids, and a transient increase in de novo lipogenesis and TCA-related metabolites in HF2M. Low anti-oxidative capacities and anti-inflammatory response metabolites were found in the HF4M, and a perturbed hexose metabolism was observed in HF6M. Overall, we show that IR and progressively obese minipigs reveal phenotype-specific metabolomic signatures for which some of the identified metabolites could be considered as potential biomarkers of early progression to TD2.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Swine , Insulin/metabolism , Swine, Miniature/metabolism , Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Metabolomics
7.
Curr Dev Nutr ; 7(12): 102038, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38162999

ABSTRACT

Background: The effects of supplementation with L-arginine (L-arg), the precursor of nitric oxide (NO), on vascular and cardiometabolic health have largely been explored. Whether other mechanisms of the action of L-arg exist remains unknown, as arginine metabolism is complicated. Objective: We aimed to characterize the effect of low dose L-arg supplementation on overall human metabolism both in a fasting state and in response to an allostatic stress. Methods: In a randomized, double-blind, crossover study, 32 healthy overweight adults (mean age 45 y) with cardiometabolic risk (fasting plasma triglycerides >150 mg/dL; waist circumference >94 cm [male] or >80 cm [female]) were treated with 1.5 g sustained-release L-arg 3 times/d (4.5 g/d) or placebo for 4 wk. On the last day of treatment, volunteers consumed a high-fat meal challenge (900 kcal, 80% as fat, 13% as carbohydrate, and 7% as protein). Plasma was collected at fasting, 2, 4, and 6 h after the challenge, and the metabolome was analyzed by high-resolution liquid chromatography-mass spectrometry. Metabolic profiles were analyzed using linear mixed models-principal component analysis. Results: The challenge meal explained most of the changes in the metabolome. The overall effect of L-arg supplementation significantly explained 0.5% of the total variance, irrespective of the response to the challenge meal (P < 0.05). Among the metabolites that explain most of the L-arg effect, we found many amino acids, including branched-chain amino acids, that were decreased by L-arg supplementation. L-arg also decreased trimethylamine N-oxide (TMAO). Other changes suggest that L-arg increased methyl demand. Conclusions: Analysis of the effect of 4 wk of L-arg supplementation on the metabolome reveals important effects on methyl balance and gut microbiota activity, such as a decrease in TMAO. Further studies are needed to investigate those mechanisms and the implications of these changes for long-term health.This trial was registered at clinicaltrials.gov as NCT02354794.

8.
PLoS One ; 17(11): e0277458, 2022.
Article in English | MEDLINE | ID: mdl-36445891

ABSTRACT

This study explored plasma biomarkers and metabolic pathways underlying feed efficiency measured as residual feed intake (RFI) in Charolais heifers. A total of 48 RFI extreme individuals (High-RFI, n = 24; Low-RFI, n = 24) were selected from a population of 142 heifers for classical plasma metabolite and hormone quantification and plasma metabolomic profiling through untargeted LC-MS. Most efficient heifers (Low-RFI) had greater (P = 0.03) plasma concentrations of IGF-1 and tended to have (P = 0.06) a lower back fat depth compared to least efficient heifers. However, no changes were noted (P ≥ 0.10) for plasma concentrations of glucose, insulin, non-esterified fatty acids, ß-hydroxybutyrate and urea. The plasma metabolomic dataset comprised 3,457 ions with none significantly differing between RFI classes after false discovery rate correction (FDR > 0.10). Among the 101 ions having a raw P < 0.05 for the RFI effect, 13 were putatively annotated by using internal databases and 6 compounds were further confirmed with standards. Metabolic pathway analysis from these 6 confirmed compounds revealed that the branched chain amino acid metabolism was significantly (FDR < 0.05) impacted by the RFI classes. Our results confirmed for the first time in beef heifers previous findings obtained in male beef cattle and pointing to changes in branched-chain amino acids metabolism along with that of body composition as biological mechanisms related to RFI. Further studies are warranted to ascertain whether there is a cause-and-effect relationship between these mechanisms and RFI.


Subject(s)
Amino Acids, Branched-Chain , Plasma , Male , Cattle , Animals , Female , Metabolomics , Eating , Disease Progression
9.
Front Nutr ; 9: 851931, 2022.
Article in English | MEDLINE | ID: mdl-35600812

ABSTRACT

The identification and validation of biomarkers of food intake (BFIs) is a promising approach to develop more objective and complementary tools to the traditional dietary assessment methods. Concerning dairy, their evaluation in terms of intake is not simple, given the variety of existing foods, making it difficult to establish the association between specific dairy products consumption and the effects on human health, which is also dependent on the study population. Here, we aimed at identifying BFI of both milk (M) and yogurt (Y) in 14 healthy young (20-35 years) and 14 older (65-80 years). After a 3-week run-in period of dairy exclusion from the diet, the subjects acutely consumed 600 ml of M or Y. Metabolomics analyses were conducted on serum samples during the following 6 h (LC-MS and GC-MS). Several metabolites showing increased iAUC after milk or yogurt intake were considered as potential BFI, including lactose (M > Y, 2-fold), galactitol (M > Y, 1.5-fold), galactonate (M > Y, 1.2-fold), sphingosine-1-phosphate (M > Y from 2.1-fold), as well as an annotated disaccharide (Y > M, 3.6-fold). Delayed serum kinetics were also observed after Y compared to M intake lysine (+22 min), phenylalanine (+45 min), tyrosine (+30min), threonine (+38 min) 3-phenyllactic acid (+30 min), lactose (+30 min), galactitol (+45min) and galactonate (+30 min). The statistical significance of certain discriminant metabolites, such as sphingosine-1-phosphate and several free fatty acids, was not maintained in the older group. This could be related to the physiological modifications induced by aging, like dysregulated lipid metabolism, including delayed appearance of dodecanoic acid (+60 min) or altered postprandial appearance of myristic acid (+70% Cmax), 3-dehydroxycarnitine (-26% Cmin), decanoylcarnitine (-51% Cmin) and dodecanoylcarnitine (-40% Cmin). In conclusion, candidate BFI of milk or yogurt could be identified based on the modified postprandial response resulting from the fermentation of milk to yogurt. Moreover, population specificities (e.g., aging) should also be considered in future studies to obtain more accurate and specific BFI.

10.
Nutrients ; 14(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35276829

ABSTRACT

This review focuses on the added value provided by a research strategy applying metabolomics analyses to assess phenotypic flexibility in response to different nutritional challenge tests in the framework of metabolic clinical studies. We discuss findings related to the Oral Glucose Tolerance Test (OGTT) and to mixed meals with varying fat contents and food matrix complexities. Overall, the use of challenge tests combined with metabolomics revealed subtle metabolic dysregulations exacerbated during the postprandial period when comparing healthy and at cardiometabolic risk subjects. In healthy subjects, consistent postprandial metabolic shifts driven by insulin action were reported (e.g., a switch from lipid to glucose oxidation for energy fueling) with similarities between OGTT and mixed meals, especially during the first hours following meal ingestion while differences appeared in a wider timeframe. In populations with expected reduced phenotypic flexibility, often associated with increased cardiometabolic risk, a blunted response on most key postprandial pathways was reported. We also discuss the most suitable statistical tools to analyze the dynamic alterations of the postprandial metabolome while accounting for complexity in study designs and data structure. Overall, the in-depth characterization of the postprandial metabolism and associated phenotypic flexibility appears highly promising for a better understanding of the onset of cardiometabolic diseases.


Subject(s)
Cardiovascular Diseases , Postprandial Period , Cardiovascular Diseases/etiology , Glucose Tolerance Test , Humans , Meals , Metabolome , Postprandial Period/physiology
11.
Nutrients ; 13(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34959754

ABSTRACT

This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.


Subject(s)
Adipose Tissue/metabolism , Dietary Fiber/administration & dosage , Energy Metabolism/drug effects , Muscle, Skeletal/metabolism , Overnutrition/metabolism , Amino Acids/metabolism , Animals , Bread , Dietary Supplements , Disease Models, Animal , Fatty Acids, Volatile/metabolism , Feces/chemistry , Female , Fermented Foods , Glucose/metabolism , Incretins/metabolism , Intestines/metabolism , Lactic Acid/metabolism , Swine , Swine, Miniature , Urea/metabolism
12.
Adv Nutr ; 12(6): 2112-2131, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34229350

ABSTRACT

The dietary shift from animal protein (AP) to plant protein (PP) sources is encouraged for both environmental and health reasons. For instance, PPs are associated with lower cardiovascular and diabetes risks compared with APs, although the underlying mechanisms mostly remain unknown. Metabolomics is a valuable tool for globally and mechanistically characterizing the impact of AP and PP intake, given its unique ability to provide integrated signatures and specific biomarkers of metabolic effects through a comprehensive snapshot of metabolic status. This scoping review is aimed at gathering and analyzing the available metabolomics data associated with PP- and AP-rich diets, and discusses the metabolic effects underlying these metabolomics signatures and their potential implication for cardiometabolic health. We selected 24 human studies comparing the urine, plasma, or serum metabolomes associated with diets with contrasted AP and PP intakes. Among the 439 metabolites reported in those studies as able to discriminate AP- and PP-rich diets, 46 were considered to provide a robust level of evidence, according to a scoring system, especially amino acids (AAs) and AA-related products. Branched-chain amino acids, aromatic amino acids (AAAs), glutamate, short-chain acylcarnitines, and trimethylamine-N-oxide, which are known to be related to an increased cardiometabolic risk, were associated with AP-rich diets, whereas glycine (rather related to a reduced risk) was associated with PP-rich diets. Tricarboxylic acid (TCA) cycle intermediates and products from gut microbiota AAA degradation were also often reported, but the direction of their associations differed across studies. Overall, AP- and PP-rich diets result in different metabolomics signatures, with several metabolites being plausible candidates to explain some of their differential associations with cardiometabolic risk. Additional studies specifically focusing on protein type, with rigorous intake control, are needed to better characterize the associated metabolic phenotypes and understand how they could mediate differential AP and PP effects on cardiometabolic risk.


Subject(s)
Cardiovascular Diseases , Plant Proteins , Animals , Biomarkers , Diet , Humans , Metabolomics
13.
Nutrients ; 13(6)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205926

ABSTRACT

The gut microbiota adapts to age-related changes in host physiology but is also affected by environmental stimuli, like diet. As a source of both pre- and probiotics, dairy and fermented foods modulate the gut microbiota composition, which makes them interesting food groups to use for the investigation of interactions between diet and ageing. Here we present the effects of excluding dairy products and limiting fermented food consumption for 19 days on gut microbiota composition and circulating metabolites of 28 healthy, young (YA) and older (OA) adult men. The intervention affected gut microbial composition in both groups, with significant increases in Akkermansia muciniphila and decreases in bacteria of the Clostridiales order. Lower fasting levels of glucose and insulin, as well as dairy-associated metabolites like lactose and pentadecanoic acid, were observed after the intervention, with no effect of age. The intervention also decreased HDL and LDL cholesterol levels. Dairy fat intake was positively associated with the HDL cholesterol changes but not with the LDL/HDL ratio. In conclusion, restricting the intake of dairy and fermented foods in men modified their gut microbiota and blood metabolites, while the impact of the dietary restrictions on these outcomes was more marked than the effect of age.


Subject(s)
Dairy Products , Diet , Fermented Foods , Gastrointestinal Microbiome/physiology , Adult , Aged , Aged, 80 and over , Bacteria , Cholesterol, HDL , Fatty Acids , Fatty Acids, Nonesterified , Feces/microbiology , Humans , Lipids , Probiotics , Young Adult
14.
Proc Nutr Soc ; 80(2): 207-220, 2021 05.
Article in English | MEDLINE | ID: mdl-33198824

ABSTRACT

During ageing, skeletal muscle develops anabolic resistance towards the stimulation of protein synthesis induced by dietary amino acids. The stimulation of muscle protein synthesis after food intake remains insufficient, even with a protein intake recommended for healthy adults. This alteration is one of the mechanisms known to be responsible for the decrease of muscle mass and function during ageing, namely sarcopenia. Increasing dietary protein intake above the current RDA(0⋅83 g/kg/d) has been strongly suggested to overcome the anabolic resistance observed. It is also specified that the dietary protein ingested should be of good quality. A protein of good quality is a protein whose amino acid (AA) composition covers the requirement of each AA when ingested at the RDA. However, the biological value of proteins may vary among dietary sources in which AA composition could be unbalanced. In the present review, we suggest that the quality of a dietary protein is also related to several other determinants. These determinants include the speed of digestion of dietary proteins, the presence of specific AA, the food matrix in which the dietary proteins are included, the processes involved in the production of food products (milk gelation and cooking temperature), the energy supply and its nature, and the interaction between nutrients before ingestion. Particular attention is given to plant proteins for nutrition of the elderly. Finally, the timing of protein intake and its association with the desynchronized intake of energetic nutrients are discussed.


Subject(s)
Dietary Proteins , Sarcopenia , Aged , Humans , Muscle Proteins , Muscle, Skeletal , Nutritional Status , Sarcopenia/prevention & control
15.
Nutrients ; 12(8)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32823827

ABSTRACT

The postprandial period represents one of the most challenging phenomena in whole-body metabolism, and it can be used as a unique window to evaluate the phenotypic flexibility of an individual in response to a given meal, which can be done by measuring the resilience of the metabolome. However, this exploration of the metabolism has never been applied to the arteriovenous (AV) exploration of organs metabolism. Here, we applied an AV metabolomics strategy to evaluate the postprandial flexibility across the liver and the intestine of mini-pigs subjected to a high fat-high sucrose (HFHS) diet for 2 months. We identified for the first time a postprandial signature associated to the insulin resistance and obesity outcomes, and we showed that the splanchnic postprandial metabolome was considerably affected by the meal and the obesity condition. Most of the changes induced by obesity were observed in the exchanges across the liver, where the metabolism was reorganized to maintain whole body glucose homeostasis by routing glucose formed de novo from a large variety of substrates into glycogen. Furthermore, metabolites related to lipid handling and energy metabolism showed a blunted postprandial response in the obese animals across organs. Finally, some of our results reflect a loss of flexibility in response to the HFHS meal challenge in unsuspected metabolic pathways that must be further explored as potential new events involved in early obesity and the onset of insulin resistance.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Intestinal Mucosa/metabolism , Liver/metabolism , Magnetic Resonance Spectroscopy , Obesity/metabolism , Postprandial Period/physiology , Swine, Miniature/metabolism , Animals , Blood Glucose/metabolism , Diet, High-Fat/adverse effects , Dietary Sucrose/adverse effects , Energy Metabolism , Female , Homeostasis , Insulin Resistance , Obesity/etiology , Swine
16.
Sci Rep ; 9(1): 12527, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467335

ABSTRACT

Blood circulation mainly aims at distributing the nutrients required for tissue metabolism and collecting safely the by-products of all tissues to be further metabolized or eliminated. The simultaneous study of arterial (A) and venous (V) specific metabolites therefore has appeared to be a more relevant approach to understand and study the metabolism of a given organ. We propose to implement this approach by applying a metabolomics (NMR) strategy on paired AV blood across the intestine and liver on high fat/high sugar (HFHS)-fed minipigs. Our objective was to unravel kinetically and sequentially the metabolic adaptations to early obesity/insulin resistance onset specifically on these two tissues. After two months of HFHS feeding our study of AV ratios of the metabolome highlighted three major features. First, the hepatic metabolism switched from carbohydrate to lipid utilization. Second, the energy demand of the intestine increased, resulting in an enhanced uptake of glutamine, glutamate, and the recruitment of novel energy substrates (choline and creatine). Third, the uptake of methionine and threonine was considered to be driven by an increased intestine turnover to cope with the new high-density diet. Finally, the unique combination of experimental data and modelling predictions suggested that HFHS feeding was associated with changes in tryptophan metabolism and fatty acid ß-oxidation, which may play an important role in lipid hepatic accumulation and insulin sensitivity.


Subject(s)
Arteries/chemistry , Intestines/blood supply , Liver/blood supply , Obesity/metabolism , Veins/chemistry , Animals , Arteries/metabolism , Disease Models, Animal , Fatty Acids , Female , Humans , Insulin/metabolism , Liver/metabolism , Metabolomics , Methionine/metabolism , Obesity/blood , Swine , Swine, Miniature , Threonine/metabolism , Veins/metabolism
17.
Nutrients ; 11(4)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30934871

ABSTRACT

BACKGROUND: When given in the long term, whey proteins alone do not appear to be an optimal nutritional strategy to prevent or slow down muscle wasting during aging or catabolic states. It has been hypothesized that the digestion of whey may be too rapid during a catabolic situation to sustain the anabolic postprandial amino acid requirement necessary to elicit an optimal anabolic response. Interestingly, it has been shown recently that the duration of the postprandial stimulation of muscle protein synthesis in healthy conditions can be prolonged by the supplementary ingestion of a desynchronized carbohydrate load after food intake. We verified this hypothesis in the present study in two different cases of muscle wasting associated with anabolic resistance, i.e., glucocorticoid treatment and aging. METHODS: Multi-catheterized minipigs were treated or not with glucocorticoids for 8 days. Muscle protein synthesis was measured sequentially over time after the infusion of a 13C phenylalanine tracer using the arterio-venous method before and after whey protein meal ingestion. The energy bolus was given 150 min after the meal. For the aging study, aged rats were fed the whey meal and muscle protein synthesis was measured sequentially over time with the flooding dose method using 13C Valine. The energy bolus was given 210 min after the meal. RESULTS: Glucocorticoid treatment resulted in a decrease in the duration of the stimulation of muscle protein synthesis. The energy bolus given after food intake was unable to prolong this stimulation despite a simultaneous increase of insulin and glucose following its absorption. In old rats, a similar observation was made with no effect of the energy bolus on the duration of the muscle anabolic response following whey protein meal intake. CONCLUSIONS: Despite very promising observations in healthy situations, the strategy aimed at increasing muscle protein synthesis stimulation by giving an energy bolus during the postprandial period remained inefficient in our two anabolic resistance models.


Subject(s)
Animal Feed , Dexamethasone , Energy Intake , Muscle Proteins , Muscle, Skeletal , Swine , Animals , Male , Rats , Aging , Animal Feed/analysis , Blood Glucose , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , Glucocorticoids/administration & dosage , Glucocorticoids/pharmacology , Injections, Intravenous , Insulin/blood , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Swine/physiology
18.
Nutrients ; 11(2)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30744017

ABSTRACT

Elevated plasma branched-chain amino acids (BCAA) levels are often observed in obese insulin-resistant (IR) subjects and laboratory animals. A reduced capacity of the adipose tissues (AT) to catabolize BCAA has been proposed as an explanation, but it seems restricted to obesity models of genetically modified or high fat⁻fed rodents. We aimed to determine if plasma BCAA levels were increased in a model of IR without obesity and to explore the underlying mechanisms. Rats were fed with a standard diet, containing either starch or fructose. BCAA levels, body weight and composition were recorded before and after 5, 12, 30, or 45 days of feeding. Elevated blood BCAA levels were observed in our IR model with unaltered body weight and composition. No changes were observed in the liver or the AT, but instead an impaired capacity of the skeletal muscle to catabolize BCAA was observed, including reduced capacity for transamination and oxidative deamination. Although the elevated blood BCAA levels in the fructose-fed rat seem to be a common feature of the IR phenotype observed in obese subjects and high fat⁻fed animals, the mechanisms involved in such a metabolic phenomenon are different, likely involving the skeletal muscle BCAA metabolism.


Subject(s)
Amino Acids, Branched-Chain , Fructose , Insulin Resistance/physiology , Muscle, Skeletal/physiopathology , Amino Acids, Branched-Chain/blood , Amino Acids, Branched-Chain/metabolism , Animals , Disease Models, Animal , Fructose/adverse effects , Fructose/metabolism , Liver/chemistry , Liver/drug effects , Liver/metabolism , Male , Muscle, Skeletal/chemistry , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Obesity , Rats , Rats, Sprague-Dawley
19.
J Nutr Biochem ; 65: 72-82, 2019 03.
Article in English | MEDLINE | ID: mdl-30654277

ABSTRACT

Obesity induced by overfeeding ultimately can lead to nonalcoholic fatty liver disease, whereas dietary fiber consumption is known to have a beneficial effect. We aimed to determine if a supplementation of a mix of fibers (inulin, resistant starch and pectin) could limit or alleviate overfeeding-induced metabolic perturbations. Twenty female minipigs were fed with a control diet (C) or an enriched fat/sucrose diet supplemented (O + F) or not (O) with fibers. Between 0 and 56 days of overfeeding, insulin (+88%), HOMA (+102%), cholesterol (+45%) and lactate (+63%) were increased, without any beneficial effect of fibers supplementation. However, fibers supplementation limited body weight gain (vs. O, -15% at D56) and the accumulation of hepatic lipids droplets induced by overfeeding. This could be explained by a decreased lipids transport potential (-50% FABP1 mRNA, O + F vs. O) inducing a down-regulation of regulatory elements of lipids metabolism / lipogenesis (-36% SREBP1c mRNA, O + F vs. O) but not to an increased oxidation (O + F not different from O and C for proteins and mRNA measured). Glucose metabolism was also differentially regulated by fibers supplementation, with an increased net hepatic release of glucose in the fasted state (diet × time effect, P<.05 at D56) that can be explained partially by a possible increased glycogen synthesis in the fed state (+82% GYS2 protein, O + F vs. O, P=.09). The direct role of short chain fatty acids on gluconeogenesis stimulation is questioned, with probably a short-term impact (D14) but no effect on a long-term (D56) basis.


Subject(s)
Dietary Fiber/therapeutic use , Lipid Metabolism/drug effects , Liver/drug effects , Overnutrition/diet therapy , Animals , Diet, High-Fat/adverse effects , Fatty Acids, Volatile/metabolism , Female , Fermentation , Gene Expression Regulation/drug effects , Inulin/pharmacology , Lipogenesis/drug effects , Liver/metabolism , Overnutrition/etiology , Pectins/pharmacology , Proteins/genetics , Proteins/metabolism , Sucrose/adverse effects , Swine , Swine, Miniature
20.
Food Funct ; 9(12): 6526-6534, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30475369

ABSTRACT

With aging, skeletal muscle becomes resistant to the anabolic effect of dietary proteins and sarcopenia develops. Animal proteins, which are rich in leucine, are recommended for the elderly, but it is not known whether their replacement by plant proteins would maintain the health and physical independence of this population. Aged rats were fed with animal proteins (casein and whey proteins) with different leucine contents and compared to rats fed with diets in which whey was substituted with soy proteins and by increasing the total protein content or not. Our results clearly showed that the meal with mixed soy/whey proteins allowed the anabolic response of skeletal muscle during aging only if the protein content was increased by 25%. Indeed, if the protein content of the soy/whey diet was decreased to a similar protein content such as a whey diet, i.e. 13%, the anabolic effect decreased. The same observation was recorded if the whey proteins were totally substituted with soy proteins.


Subject(s)
Aging/metabolism , Dietary Proteins/metabolism , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Soybean Proteins/metabolism , Whey Proteins/metabolism , Animals , Dietary Proteins/analysis , Humans , Leucine/analysis , Leucine/metabolism , Male , Rats , Rats, Wistar , Soybean Proteins/chemistry , Whey Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...