Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(1): 129-138, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38154123

ABSTRACT

The conformational populations of pantolactone, epichlorohydrin, and N-acetyl-tryptophan methyl ester were investigated by using similarity analysis between their calculated and experimental chiroptical spectra. By performing the analysis on pantolactone using two different chiroptical methods, namely, vibrational circular dichroism and Raman optical activity, it was found that the optimal sets of conformers do not match between the two methods, indicating that the conformational populations obtained by optimizing the similarity between calculated and experimental spectra are unlikely to be more accurate than energy-based Boltzmann populations. Also, it was found for pantolactone, epichlorohydrin, and N-acetyl-tryptophan methyl ester that the similarity between calculated and experimental spectra would often not vary significantly if each of the populated conformers was discarded, one at a time. This observation indicates that more than one set of conformers can provide acceptable similarity between the predicted and experimental spectra. Therefore, the correct set of conformers cannot be accurately determined by similarity analysis.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123231, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37562213

ABSTRACT

Chiroptical spectroscopic measurements serve as routine methods to assign the absolute configuration of chiral compounds and interpret their conformational behavior in solution. One common challenge is the use of strongly hydrogen-bonding solvents, which can significantly bias the conformational ensemble and affect the vibrational circular dichroism (VCD) active bands in solution. One such solvent is dimethyl sulfoxide (DMSO)-an excellent solvent for stubborn compounds-that must be explicitly considered in VCD analysis. Explicit consideration of solvent remains a critical challenge in chiroptical spectroscopy due to the need to explore solute-solvent conformational space and the computational expense in modeling these clusters. Interested in the recent development of the Quantum Cluster Growth (QCG) program by the Grimme lab, we set out to model and interpret previously reported VCD spectra for several molecules using their efficient program. Our purposes are two-fold: (1) to investigate the applicability of the QCG program to the problem of reproducing VCD spectra in DMSO solvent and (2) to identify limitations in using this approach. We find that we can conveniently model and analyze the VCD spectra of investigated molecules in DMSO. However, the final set of conformers used for VCD calculations are functional dependent and different sets of conformers can provide satisfactory quantitative agreement between experimental and predicted VCD spectra. We hope that this study provides guidance for future chiroptical studies in the challenging DMSO solvent.

3.
Chirality ; 35(4): 211-226, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36651721

ABSTRACT

Triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) are cyclic peroxides that exhibit atropisomerism resulting from restricted rotation around three peroxide bonds. As a result, one pair of enantiomers with D3 symmetry and another pair of enantiomers with C2 symmetry can be identified. Previous studies, based on mass spectrometry data and computational results, have shown that conformations of TATP with D3 and C2 symmetry can be isolated. Assuming that enantiomer samples of TATP and HMTD can be obtained with sufficient enantiopurity, we investigated their chiroptical properties, namely, optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and Raman optical activity (VROA). ORD curves and VCD spectra are seen to be very similar for D3 - and C2 -symmetric atropisomers with the same overall helicity. Predicted VROA results, however, show significant differences between D3 - and C2 -symmetric atropisomers with the same overall helicity. The D3 -symmetric atropisomer is predicted to exhibit considerably larger magnitude vibrational optical activity signals than the C2 -symmetric atropisomer.

4.
Chirality ; 35(1): 49-57, 2023 01.
Article in English | MEDLINE | ID: mdl-36367323

ABSTRACT

Methyl esters of [5]-ladderanoic acid and [3]-ladderanoic acid were prepared by esterification of the acids isolated from biomass at a wastewater treatment plant. Optical rotations at six different wavelengths (633, 589, 546, 436, 405 and 365 nm) and vibrational circular dichroism (VCD) spectra in the 1800-900 cm-1 region were measured in CDCl3 solvent and compared with quantum chemical (QC) predictions using B3LYP functional and 6-311++G(2d,2p) basis set with polarizing continuum model representing the solvent. QC predictions gave negative optical rotations at all six wavelengths for (R)-methyl [5]-ladderanoate and positive optical rotations for (R)-methyl [3]-ladderanoate, the same signs as previously reported for the corresponding acids. The crystal structure of (-)-methyl [5]-ladderanoate independently confirmed (R) configuration. The QC-predicted VCD spectra using Boltzmann population weighted spectra of individual conformers did not provide satisfactory quantitative agreement with the experimental VCD spectra. An improved quantitative agreement for VCD spectra could be obtained when conformer populations were optimized to maximize the similarity between experimental and predicted VCD spectra, but more improvements in VCD predictions are needed.


Subject(s)
Esters , Stereoisomerism , Circular Dichroism , Optical Rotation , Solvents
5.
Chirality ; 34(12): 1515-1525, 2022 12.
Article in English | MEDLINE | ID: mdl-36300855

ABSTRACT

Hexahydrocurcumin (HHC) and octahydrocurcumin (OHC) were synthesized, and their enantiomers were separated using supercritical fluid chromatography. The absolute configurations (ACs) of HHC and OHC were independently determined using experimental measurements and quantum theoretical predictions of vibrational circular dichroism, electronic circular dichroism, and optical rotatory dispersion. These studies lead to AC assignments of (-)-(R)-HHC and (+)-(R,R)-OHC. The AC of OHC is further confirmed by its structure determined from single crystal x-ray diffraction.


Subject(s)
Stereoisomerism , Optical Rotatory Dispersion , Circular Dichroism
6.
Chirality ; 33(11): 773-782, 2021 11.
Article in English | MEDLINE | ID: mdl-34590354

ABSTRACT

The experimental vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectra were measured for the enantiomers of [1]rotaxane 1. These experimental spectra have been analyzed using predicted VCD and ECD spectra for (S, Rmp ) or (S, Smp ) diastereomers using density functional theory. This comparison allowed for a definitive assignment of the absolute configuration of 1.

7.
J Phys Chem A ; 125(36): 8000-8013, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34478311

ABSTRACT

A novel proof-of-concept model for chiral molecular structure determination using just the molecular formula and vibrational optical activity (VOA) spectra is presented. To verify this concept, the molecular formula of a desired compound is used to generate all possible chiral structural isomers and their VOA spectra are predicted. The similarity analyses of predicted VOA spectra were then carried out in two different ways: (a) similarity between VOA spectrum of one structural isomer with those of the rest, referred to as cross-correlations; (b) similarity between VOA spectra of all chiral structural isomers with the experimental VOA spectra of the desired compound. Three different molecular formulae, C4H8O, C3H5ClO, and C6H10O, and their chiral structural isomers (6, 9, and 75 respectively), were investigated. In each case, the correct chiral molecular structure of the desired compound was identified without ambiguity. Cross-correlation analysis revealed the uniqueness of VOA spectra in deducing the chiral molecular structure solely from its molecular formula. Different chiral structural isomers associated with the molecular formula CH3NO2 were also found to have no significant cross-correlations between their VOA spectra, opening a pathway to detect and identify the elusive chiral N-hydroxyoxaziridine from its VOA spectra.

8.
Chirality ; 33(5): 233-241, 2021 05.
Article in English | MEDLINE | ID: mdl-33598968

ABSTRACT

Sesquitepenoids inuloxins A-D, belonging to different subgroups, were isolated from Dittrichia viscosa and showed potential biocontrol of some parasitic plants as Pelipanche, Orobanche, and Cuscuta species. The absolute configurations of the first three inuloxins A-C were previously determined by using experimental and computational chiroptical spectroscopic methods. The absolute configuration of inuloxin D remains to be established. The bioactive inuloxin E, closely related to inuloxin D, was recently isolated from the same plant organic extract. The same relative configuration of inuloxin D was assigned to inuloxin E by comparison of their NMR spectroscopic data. The absolute configurations of inuloxin D and inuloxin E are suggested in this work by analysis of the experimental and predicted chiroptical properties of the 4-O-acetyl derivative of inuloxin D.


Subject(s)
Sesquiterpenes/chemistry , Asteraceae/chemistry , Circular Dichroism , Plant Extracts/chemistry , Stereoisomerism
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119094, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33142265

ABSTRACT

Two crispine A analogs and tetrahydrofuro[2,3-b]furan-3,3a(6aH)-diol, endowed with hydroxyl groups that can participate in intramolecular hydrogen bonding, have been synthesized and experimental vibrational circular dichroism (VCD) spectra and optical rotatory dispersion (ORD) data have been measured in CD3OD/CH3OH solvents. The absolute configurations (ACs) of these compounds have been determined using their synthetic schemes, supplemented wherever possible with X-ray diffraction data. The ACs are also analyzed with quantum chemical (QC) calculations of VCD and ORD utilizing implicit solvation as well as explicit solvation models, with the later employing classical molecular dynamics (MD) simulations. It is found that VCD calculations with implicit solvation model are adequate for determining the ACs, despite propensity of studied compounds for intermolecular hydrogen bonding between solute and solvent molecules. This observation is important because time-consuming MD simulations may not be necessary in the type of situations studied here. Additionally, it is found that the QC predicted VCD spectra provided enough diastereomer discrimination for determining the correct AC of studied compounds independently. The same observation did not apply to ORD.

10.
Org Lett ; 22(22): 8846-8849, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33141582

ABSTRACT

Small chiral molecules are excellent candidates to push the boundaries of enantiodiscrimination analytical techniques. Here is reported the synthesis of two new deuterated chiral probes, (R)- and (S)-[2H]-ethyl tosylate, obtained with high enantiomeric excesses. Due to their crypto-optically active properties, the discrimination of each enantiomer is challenging. Whereas their enantiopurity is determined by 2H NMR in chiral anisotropic media, their identification was performed by combining quantum chemical calculations and vibrational circular dichroism analysis.

11.
Org Biomol Chem ; 18(35): 6801-6806, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32936189

ABSTRACT

The optical purity of an enantiomeric mixture deduced from specific rotation measurements was found by Horeau to be different from its enantiomeric excess, which came to be known as the Horeau effect. This observation had important implications in the practical use of specific rotations and has led to investigations on homochiral and heterochiral aggregation processes. In this review, dedicated to the Horeau principle, the theoretical basis for the observance of the Horeau effect and a survey of the specific rotation studies investigating the Horeau effect are provided, and possible future investigations are suggested.

12.
J Org Chem ; 85(22): 14456-14466, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32786637

ABSTRACT

The absolute configuration and conformations of (-)-tert-butylphenylphosphinoamidate were determined using three different chiroptical spectroscopic methods, namely vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and optical rotatory dispersion (ORD). In each of the spectroscopic methods used, experimental data for the (-)-enantiomer of tert-butylphenylphosphinoamidate were measured in the solution phase. Using the concentration-dependent experimental infrared spectra, the existence of dimers in the solution was investigated, and the monomer-dimer equilibrium constant was determined. Concomitant quantum mechanical predictions of the VCD, ECD, and ORD for monomeric tert-butylphenylphosphinoamidate were carried out using density functional theory (DFT) calculations using the B3LYP functional and the 6-31G(d), 6-311G(2d,2p) and aug-cc-pVDZ basis sets. Similar predictions for dimeric tert-butylphenylphosphinoamidate were also obtained using the B3LYP/6-31G(d) method. A comparison of theoretically predicted data with the corresponding experimental data led to the elucidation of the absolute configuration as (-)-(R)-tert-butylphenylphosphinoamidate with one predominant conformation in the solution. This conclusion was independently supported by X-ray analysis of the complex with (+)-R-2,2'-dihydroxy-1,1'-binaphthol ((+)-R- BINOL).

13.
Nat Prod Rep ; 37(12): 1661-1699, 2020 12 16.
Article in English | MEDLINE | ID: mdl-32608433

ABSTRACT

Covering: 2015 to up to 2019 This review presents the recent progress towards elucidating the structures of chiral natural products and applications using vibrational optical activity (VOA) spectroscopy. Vibrational circular dichroism (VCD) and vibrational Raman optical activity (VROA) are two separate branches of VOA spectroscopy, providing independent and complementary structural information. While determining the absolute configuration (AC) of a given natural product is the primary goal, the determination or assessment of major conformations associated with each diastereomer is also a significant part of this enquiry. The latest developments in experimental and computational aspects of VOA spectroscopies and their applications for inferring the AC and predominant conformations of natural products are summarized. The prospects and limitations in the application of VOA spectroscopy to new natural products are summarized.


Subject(s)
Biological Products/chemistry , Vibration , Molecular Structure , Spectrum Analysis/methods
14.
J Nat Prod ; 83(7): 2178-2190, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32584573

ABSTRACT

The versatility of the natural products (2S,3S)- and (2S,3R)-3-hydroxy-5-oxotetrahydrofuran-2,3-dicarboxylic acids (1 and 2), isolated in large amounts from tropical plant sources, has been demonstrated by the construction of 3-substituted and 3,4-disubstituted chiral pyrrolidine-2,5-diones. The absolute configurations of chiral pyrrolidine-2,5-diones have been ascertained using chiroptical spectroscopic methods and/or single-crystal XRD data. A combination of different reaction strategies delivering a diverse matrix of fused heterocyclic ring systems is presented. The pyrrolo[2,1-a]isoquinoline alkaloid (+)-crispine A possesses a wide range of pharmacological activities including antidepressant, antiplatelet, antileukemic, and anticancer activities. The analogues of indolizino[8,7-b]indole alkaloids (+)- and (-)-harmicine show strong antileishmanial, antinociceptive, PDE5-inhibitory, antimalarial, and antiviral activities. The bicyclic furo[2,3-b]pyrrolo skeleton is present in many natural products. Thus, the uniqueness of relatively cheap, naturally occurring chiral 2-hydroxycitric acid lactones as chirons has been demonstrated by the construction of some important molecular skeletons that are otherwise difficult to synthesize.


Subject(s)
Biological Products/chemistry , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Molecular Structure , Stereoisomerism
15.
Chirality ; 32(5): 564-578, 2020 05.
Article in English | MEDLINE | ID: mdl-32115784

ABSTRACT

The chiroptical response in the form of vibrational circular dichroism (VCD) in the midinfrared region is found to be enhanced when a hydrogen of amino group of l-tryptophan is substituted with acetyl, acryloyl, or maleyl group. The order of preference for VCD enhancement is found to be acryloyl > acetyl > maleyl group. The resulting experimental VCD spectra are also found to be satisfactorily reproduced by the quantum mechanical (QM) predicted spectra. The QM predicted spectra were simulated using the conformer populations, (a) predicted by Gibbs energies and (b) optimized to maximize the similarity between experimental and predicted VCD spectra. It is found that the conformer populations predicted by Gibbs energies do not yield the maximum possible similarity between experimental and the QM predicted spectra. This work identifies the N-substitution of α-amino acids and determining the conformer populations that best reproduce the experimental spectra as two new approaches for molecular structure determination.


Subject(s)
Amino Acids/chemistry , Circular Dichroism , Nitrogen/chemistry , Optical Phenomena , Stereoisomerism , Vibration
16.
ACS Omega ; 4(3): 4963-4976, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31459680

ABSTRACT

The chiral molecular structures of four different substituted indans, namely, (S)-1-methylindan, (R)-1-methylindan-1-d, (R)-1-aminoindan, and (S)-1-indanol, were investigated using experimental vibrational absorption and vibrational circular dichroism spectra and corresponding spectra predicted using quantum chemical (QC) calculations. All of these molecules possess two ring puckering conformations, with ring puckering leading to the pseudoequatorial substituent being approximately four times more abundant over that leading to the pseudoaxial substituent. The amino group in 1-aminoindan has three conformations arising from the rotation of NH2 group, for each ring puckering conformation, resulting in a total of six conformations. Whereas 1-indanol in the nonhydrogen-bonding solvent CCl4 also has six conformations similar to those of 1-aminoindan, 1-indanol in the hydrogen-bonding solvent DMSO-d 6 adopts numerous conformations, of which 30 conformers are considered to have at least ∼1% or more population. In DMSO solution, ring puckering leading to pseudoequatorial substituent accounts for 77% population and 23% for pseudoaxial substituent. The QC spectra predicted for the geometry optimized conformers are found to be in excellent quantitative agreement with corresponding experimental spectra in all of the molecules considered. The procedures suggested in this work are hoped to provide successful pathways for future chiral molecular structural analyses.

17.
ACS Omega ; 4(4): 6154-6164, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459760

ABSTRACT

(1R,10bR)-1'-((R)-1,2-Dihydroxyethyl)-1-hydroxy-8,9-dimethoxy1,5,6,10b-tetrahydropyrrolo [2,1-a]isoquinolin-3(2H)-one, an analogue of (-)-crispine A, with three stereogenic centers is synthesized and its absolute configuration (AC) established using the combined information derived from the synthetic scheme and single crystal X-ray diffraction data. The experimental chiroptical spectra (namely, optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD)) and the corresponding quantum chemical (QC) predicted spectra for all diastereomers are used to evaluate the AC. The AC of the synthesized compound could be correctly established using any one of the three chiroptical spectroscopic methods (ORD, ECD, or VCD) when the relative configuration is constrained to be that derived from X-ray data or when the ACs of two of the chiral centers are constrained to be those derived from the synthetic scheme. In the absence of this outside information, the QC predicted ORD, ECD, and VCD for incorrect diastereomers are also found to satisfactorily reproduce the corresponding experimental spectra. Nevertheless, incorrect diastereomers could be eliminated when combined electronic dissymmetry factor (EDF) and vibrational dissymmetry factor (VDF) spectral analyses are included, leaving the correct diastereomer as the sole choice. Thus, the combined EDF and VDF spectral analysis is seen to be a helpful diastereomer discrimination tool.

18.
J Org Chem ; 84(13): 8531-8541, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31244158

ABSTRACT

Two sulfated diterpene glycosides featuring a highly substituted and sterically encumbered cyclopropane ring have been isolated from the marine red alga Peyssonnelia sp. Combination of a wide array of 2D NMR spectroscopic experiments, in a systematic structure elucidation workflow, revealed that peyssonnosides A-B (1-2) represent a new class of diterpene glycosides with a tetracyclo [7.5.0.01,10.05,9] tetradecane architecture. A salient feature of this workflow is the unique application of quantitative interproton distances obtained from the rotating frame Overhauser effect spectroscopy (ROESY) NMR experiment, wherein the ß-d-glucose moiety of 1 was used as an internal probe to unequivocally determine the absolute configuration, which was also supported by optical rotatory dispersion (ORD). Peyssonnoside A (1) exhibited promising activity against liver stage Plasmodium berghei and moderate antimethicillin-resistant Staphylococcus aureus (MRSA) activity, with no cytotoxicity against human keratinocytes. Additionally, 1 showed strong growth inhibition of the marine fungus Dendryphiella salina indicating an antifungal ecological role in its natural environment. The high natural abundance and novel carbon skeleton of 1 suggests a rare terpene cyclase machinery, exemplifying the chemical diversity in this phylogenetically distinct marine red alga.


Subject(s)
Diterpenes/chemical synthesis , Glycosides/chemical synthesis , Rhodophyta/chemistry , Spectrum Analysis/methods , Aquatic Organisms , Models, Molecular , Molecular Structure
19.
J Nat Prod ; 81(12): 2654-2666, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30562024

ABSTRACT

We have isolated mixtures of [5]- and [3]-ladderanoic acids 1a and 2a from the biomass of an anammox bioreactor and have separated the acids and their phenacyl esters for the first time by HPLC. The absolute configurations of the naturally occurring acids and their phenacyl esters are assigned as R at the site of side-chain attachment by comparison of experimental specific rotations with corresponding values predicted using quantum chemical (QC) methods. The absolute configurations for 1a and 2a were independently verified by comparison of experimental Raman optical activity spectra with corresponding spectra predicted using QC methods. The configurational assignments of 1a and 2a and of the phenacyl ester of 1a were also confirmed by X-ray crystallography.


Subject(s)
Lipids/chemistry , Biomass , Bioreactors , Circular Dichroism , Crystallography, X-Ray , Esters , Lipids/isolation & purification , Molecular Conformation , Molecular Structure , Spectrum Analysis, Raman , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL