Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(24)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34947170

ABSTRACT

The interaction between two spatially separated systems is of strong interest in order to study a wide class of unconventional effects at cryogenic temperatures. Here we report on drag transverse voltage effects in multilayered systems containing superconducting and ferromagnetic materials. The sample under test is a conventional superconductor/insulator/ferromagnet (S/I/F) trilayer in a cross configuration. S/F as well as S/N (here N stands for normal metal) bilayers in the same geometry are also analyzed for comparison. Current-voltage (I-V) characteristics measured at T = 4.2 K in the presence of a perpendicular magnetic field show strong peculiarities related to the interaction between the layers. The results are interpreted in terms of interaction effects between the layers.

2.
Int J Mol Sci ; 22(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375749

ABSTRACT

Mechanical vibrations seem to affect the behaviour of different cell types and the functions of different organs. Pressure waves, including acoustic waves (sounds), could affect cytoskeletal molecules via coherent changes in their spatial organization and mechano-transduction signalling. We analyzed the sounds spectra and their fractal features. Cardiac muscle HL1 cells were exposed to different sounds, were stained for cytoskeletal markers (phalloidin, beta-actin, alpha-tubulin, alpha-actinin-1), and studied with multifractal analysis (using FracLac for ImageJ). A single cell was live-imaged and its dynamic contractility changes in response to each different sound were analysed (using Musclemotion for ImageJ). Different sound stimuli seem to influence the contractility and the spatial organization of HL1 cells, resulting in a different localization and fluorescence emission of cytoskeletal proteins. Since the cellular behaviour seems to correlate with the fractal structure of the sound used, we speculate that it can influence the cells by virtue of the different sound waves' geometric properties that we have photographed and filmed. A theoretical physical model is proposed to explain our results, based on the coherent molecular dynamics. We stress the role of the systemic view in the understanding of the biological activity.


Subject(s)
Acoustic Stimulation , Models, Theoretical , Sound , Biomarkers , Cells, Cultured , Fluorescent Antibody Technique , Mechanotransduction, Cellular , Microscopy, Confocal , Pilot Projects , Tubulin/metabolism
3.
Sci Rep ; 5: 17544, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26626046

ABSTRACT

We develop a theoretical model to describe the transport properties of normal-metal/thin-ferromagnet/superconductor device. We perform experimental test of the model using a gold tip on PdNi/Nb bilayer. The resonant proximity effect causes conductance features very sensitive to the local ferromagnetic properties, enabling accurate measurement of polarization and thickness of the ferromagnet by point contact spectroscopy.

4.
Electromagn Biol Med ; 34(2): 106-12, 2015.
Article in English | MEDLINE | ID: mdl-26098521

ABSTRACT

The experimental conditions by which electromagnetic signals (EMS) of low frequency can be emitted by diluted aqueous solutions of some bacterial and viral DNAs are described. That the recorded EMS and nanostructures induced in water carry the DNA information (sequence) is shown by retrieval of that same DNA by classical PCR amplification using the TAQ polymerase, including both primers and nucleotides. Moreover, such a transduction process has also been observed in living human cells exposed to EMS irradiation. These experiments suggest that coherent long-range molecular interaction must be present in water to observe the above-mentioned features. The quantum field theory analysis of the phenomenon is presented in this article.


Subject(s)
DNA/metabolism , Electromagnetic Radiation , Water/metabolism , Cell Survival , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...