Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 16(11): e0259292, 2021.
Article in English | MEDLINE | ID: mdl-34762682

ABSTRACT

Today, the only living genus of coelacanth, Latimeria is represented by two species along the eastern coast of Africa and in Indonesia. This sarcopterygian fish is nicknamed a "living fossil", in particular because of its slow evolution. The large geographical distribution of Latimeria may be a reason for the great resilience to extinction of this lineage, but the lack of fossil records for this genus prevents us from testing this hypothesis. Here we describe isolated bones (right angular, incomplete basisphenoid, fragments of parasphenoid and pterygoid) found in the Cenomanian Woodbine Formation in northeast Texas that are referred to the mawsoniid coelacanth Mawsonia sp. In order to assess the impact of this discovery on the alleged characteristic of "living fossils" in general and of coelacanths in particular: 1) we compared the average time duration of genera of ray-finned fish and coelacanth in the fossil record; 2) we compared the biogeographic signal from Mawsonia with the signal from the rest of the vertebrate assemblage of the Woodbine formation; and 3) we compared these life traits with those of Latimeria. The stratigraphical range of Mawsonia is at least 50 million years. Since Mawsonia was a fresh, brackish water fish with probably a low ability to cross large sea barriers and because most of the continental components of the Woodbine Fm vertebrate assemblage exhibit Laurasian affinities, it is proposed that the Mawsonia's occurrence in North America is more likely the result of a vicariant event linked to the break-up of Pangea rather than the result of a dispersal from Gondwana. The link between a wide geographic distribution and the resilience to extinction demonstrated here for Mawsonia is a clue that a similar situation existed for Latimeria, which allowed this genus to live for tens of millions of years.


Subject(s)
Fossils , Animals , Fishes , Phylogeny , Vertebrates
2.
Sci Rep ; 11(1): 22928, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824329

ABSTRACT

A new ankylosaurid dinosaur, Tarchia tumanovae sp. nov., has been recovered from the Upper Cretaceous Nemegt Formation of Mongolia. It includes a well-preserved skull, dorsal, sacral, caudal vertebrae, sixteen dorsal ribs, ilia, a partial ischium, free osteoderms, and a tail club. The squamosal horns of T. tumanovae are divided into two layers, the external dermal layer and the underlying squamosal horn proper. The irregular ventral margin of the base of the upper dermal layer may represent a resorption surface, suggesting that the squamosal horns of some ankylosaurids underwent extreme ontogenetic remodeling. Localized pathologies on the dorsosacral ribs and the tail provide evidence of agonistic behaviour. The tail club knob asymmetry of T. tumanovae resulted from restricted bone growth due to tail club strikes. Furthermore, T. tumanovae had an anteriorly protruded shovel-shaped beak, which is a morphological character of selective feeders. Ankylosaurid diets shifted from low-level bulk feeding to selective feeding during the Baruungoyot and the Nemegt "age" (middle Campanian-lower Maastrichtian). This ankylosaurid niche shifting might have been a response to habitat change and competition with other bulk-feeding herbivores.

3.
PLoS One ; 16(8): e0255773, 2021.
Article in English | MEDLINE | ID: mdl-34403433

ABSTRACT

We report a new specimen of the plesiosaur Cardiocorax mukulu that includes the most complete plesiosaur skull from sub-Saharan Africa. The well-preserved three-dimensional nature of the skull offers rare insight into the cranial anatomy of elasmosaurid plesiosaurians. The new specimen of Cardiocorax mukulu was recovered from Bentiaba, Namibe Province in Angola, approximately three meters above the holotype. The new specimen also includes an atlas-axis complex, seventeen postaxial cervical vertebrae, partial ribs, a femur, and limb elements. It is identified as Cardiocorax mukulu based on an apomorphy shared with the holotype where the cervical neural spine is approximately as long anteroposteriorly as the centrum and exhibits a sinusoidal anterior margin. The new specimen is nearly identical to the holotype and previously referred material in all other aspects. Cardiocorax mukulu is returned in an early-branching or intermediate position in Elasmosauridae in four out of the six of our phylogenetic analyses. Cardiocorax mukulu lacks the elongated cervical vertebrae that is characteristic of the extremely long-necked elasmosaurines, and the broad skull with and a high number of maxillary teeth (28-40) which is characteristic of Aristonectinae. Currently, the most parsimonious explanation concerning elasmosaurid evolutionary relationships, is that Cardiocorax mukulu represents an older lineage of elasmosaurids in the Maastrichtian.


Subject(s)
Dinosaurs/anatomy & histology , Fossils/anatomy & histology , Reptiles/anatomy & histology , Skull/anatomy & histology , Angola , Animals , Biological Evolution , Cervical Vertebrae/anatomy & histology , Neck/anatomy & histology , Phylogeny , Ribs/anatomy & histology , Tooth/anatomy & histology
4.
PLoS One ; 14(2): e0211423, 2019.
Article in English | MEDLINE | ID: mdl-30759166

ABSTRACT

A braincase of the Cretaceous titanosaurian sauropod Malawisaurus dixeyi, complete except for the olfactory region, was CT scanned and a 3D rendering of the endocast and inner ear was generated. Cranial nerves appear in the same configuration as in other sauropods, including derived features that appear to characterize titanosaurians, specifically, an abducens nerve canal that passes lateral to the pituitary fossa rather than entering it. Furthermore, the hypoglossal nerve exits the skull via a single foramen, consistent with most titanosaurians, while other saurischians, including the basal titanosauriform, Giraffatitan, contain multiple rootlets. The size of the vestibular labyrinth is smaller than in Giraffatitan, but larger than in most derived titanosaurians. Similar to the condition found in Giraffatitan, the anterior semicircular canal is larger than the posterior semicircular canal. This contrasts with more derived titanosaurians that contain similarly sized anterior and posterior semicircular canals, congruent with the interpretation of Malawisaurus as a basal titanosaurian. Measurements of the humerus of Malawisaurus provide a body mass estimate of 4.7 metric tons. Comparison of body mass to radius of the semicircular canals of the vestibular labyrinth reveals that Malawisaurus fits the allometric relationship found in previous studies of extant mammals and Giraffatitan brancai. As in Giraffatitan, the anterior semicircular canal is significantly larger than is predicted by the allometric relationship suggesting greater sensitivity and slower movement of the head in the sagittal plane.


Subject(s)
Dinosaurs/anatomy & histology , Fossils , Skull/anatomy & histology , Animals , Brain/anatomy & histology , Ear, Inner/anatomy & histology , Imaging, Three-Dimensional , Malawi , Models, Anatomic , Phylogeny , Skull/diagnostic imaging , Tomography, X-Ray Computed
5.
PeerJ ; 5: e3119, 2017.
Article in English | MEDLINE | ID: mdl-28413721

ABSTRACT

Synapsida, the clade including therapsids and thus also mammals, is one of the two major branches of amniotes. Organismal design, with modularity as a concept, offers insights into the evolution of therapsids, a group that experienced profound anatomical transformations throughout the past 270 Ma, eventually leading to the evolution of the mammalian bauplan. However, the anatomy of some therapsid groups remains obscure. Gorgonopsian braincase anatomy is poorly known and many anatomical aspects of the brain, cranial nerves, vasculature, and osseous labyrinth, remain unclear. We analyzed two gorgonopsian specimens, GPIT/RE/7124 and GPIT/RE/7119, using propagation phase contrast synchrotron micro-computed tomography. The lack of fusion between many basicranial and occipital bones in GPIT/RE/7124, which is an immature specimen, allowed us to reconstruct its anatomy and ontogenetic sequence, in comparison with the mature GPIT/RE/7119, in great detail. We explored the braincase and rendered various skull cavities. Notably, we found that there is a separate ossification between what was previously referred to as the "parasphenoid" and the basioccipital. We reinterpreted this element as a posterior ossification of the basisphenoid: the basipostsphenoid. Moreover, we show that the previously called "parasphenoid" is in fact the co-ossification of the dermal parasphenoid and the endochondral basipresphenoid. In line with previous descriptions, the anatomy of the osseous labyrinth is rendered in detail, revealing a unique discoid morphology of the horizontal semicircular canal, rather than toroidal, probably due to architectural constraints of the ossification of the opisthotic and supraoccipital. In addition, the orientation of the horizontal semicircular canal suggests that gorgonopsians had an anteriorly tilted alert head posture. The morphology of the brain endocast is in accordance with the more reptilian endocast shape of other non-mammaliaform neotherapsids.

6.
Proc Natl Acad Sci U S A ; 112(13): 3910-5, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25775586

ABSTRACT

Timing and magnitude of surface uplift are key to understanding the impact of crustal deformation and topographic growth on atmospheric circulation, environmental conditions, and surface processes. Uplift of the East African Plateau is linked to mantle processes, but paleoaltimetry data are too scarce to constrain plateau evolution and subsequent vertical motions associated with rifting. Here, we assess the paleotopographic implications of a beaked whale fossil (Ziphiidae) from the Turkana region of Kenya found 740 km inland from the present-day coastline of the Indian Ocean at an elevation of 620 m. The specimen is ∼ 17 My old and represents the oldest derived beaked whale known, consistent with molecular estimates of the emergence of modern strap-toothed whales (Mesoplodon). The whale traveled from the Indian Ocean inland along an eastward-directed drainage system controlled by the Cretaceous Anza Graben and was stranded slightly above sea level. Surface uplift from near sea level coincides with paleoclimatic change from a humid environment to highly variable and much drier conditions, which altered biotic communities and drove evolution in east Africa, including that of primates.


Subject(s)
Climate Change , Fossils , Whales/physiology , Africa , Animal Migration , Animals , Biological Evolution , Geography , Phylogeny , Tomography, X-Ray Computed
7.
Nature ; 506(7489): 484-8, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24402224

ABSTRACT

Throughout the animal kingdom, adaptive colouration serves critical functions ranging from inconspicuous camouflage to ostentatious sexual display, and can provide important information about the environment and biology of a particular organism. The most ubiquitous and abundant pigment, melanin, also has a diverse range of non-visual roles, including thermoregulation in ectotherms. However, little is known about the functional evolution of this important biochrome through deep time, owing to our limited ability to unambiguously identify traces of it in the fossil record. Here we present direct chemical evidence of pigmentation in fossilized skin, from three distantly related marine reptiles: a leatherback turtle, a mosasaur and an ichthyosaur. We demonstrate that dark traces of soft tissue in these fossils are dominated by molecularly preserved eumelanin, in intimate association with fossilized melanosomes. In addition, we suggest that contrary to the countershading of many pelagic animals, at least some ichthyosaurs were uniformly dark-coloured in life. Our analyses expand current knowledge of pigmentation in fossil integument beyond that of feathers, allowing for the reconstruction of colour over much greater ranges of extinct taxa and anatomy. In turn, our results provide evidence of convergent melanism in three disparate lineages of secondarily aquatic tetrapods. Based on extant marine analogues, we propose that the benefits of thermoregulation and/or crypsis are likely to have contributed to this melanisation, with the former having implications for the ability of each group to exploit cold environments.


Subject(s)
Aquatic Organisms/physiology , Biological Evolution , Extinction, Biological , Fossils , Melanosis/metabolism , Reptiles/physiology , Skin Pigmentation , Animals , Body Temperature Regulation , Color , Melanins/analysis , Melanosomes/chemistry , Phylogeny , Skin/chemistry , Turtles/physiology
8.
PLoS One ; 8(10): e76741, 2013.
Article in English | MEDLINE | ID: mdl-24146919

ABSTRACT

BACKGROUND: During their evolution in the Late Cretaceous, mosasauroids attained a worldwide distribution, accompanied by a marked increase in body size and open ocean adaptations. This transition from land-dwellers to highly marine-adapted forms is readily apparent not only at the gross anatomic level but also in their inner bone architecture, which underwent profound modifications. METHODOLOGY/PRINCIPAL FINDINGS: The present contribution describes, both qualitatively and quantitatively, the internal organization (microanatomy) and tissue types and characteristics (histology) of propodial and epipodial bones in one lineage of mosasauroids; i.e., the subfamily Mosasaurinae. By using microanatomical and histological data from limb bones in combination with recently acquired knowledge on the inner structure of ribs and vertebrae, and through comparisons with extant squamates and semi-aquatic to fully marine amniotes, we infer possible implications on mosasaurine evolution, aquatic adaptation, growth rates, and basal metabolic rates. Notably, we observe the occurrence of an unusual type of parallel-fibered bone, with large and randomly shaped osteocyte lacunae (otherwise typical of fibrous bone) and particular microanatomical features in Dallasaurus, which displays, rather than a spongious inner organization, bone mass increase in its humeri and a tubular organization in its femora and ribs. CONCLUSIONS/SIGNIFICANCE: The dominance of an unusual type of parallel-fibered bone suggests growth rates and, by extension, basal metabolic rates intermediate between that of the extant leatherback turtle, Dermochelys, and those suggested for plesiosaur and ichthyosaur reptiles. Moreover, the microanatomical features of the relatively primitive genus Dallasaurus differ from those of more derived mosasaurines, indicating an intermediate stage of adaptation for a marine existence. The more complete image of the various microanatomical trends observed in mosasaurine skeletal elements supports the evolutionary convergence between this lineage of secondarily aquatically adapted squamates and cetaceans in the ecological transition from a coastal to a pelagic lifestyle.


Subject(s)
Adaptation, Physiological , Aquatic Organisms/growth & development , Bone and Bones/anatomy & histology , Bone and Bones/cytology , Reptiles/anatomy & histology , Reptiles/growth & development , Animals , Basal Metabolism , Biological Evolution , Discriminant Analysis
9.
Nat Commun ; 4: 2423, 2013.
Article in English | MEDLINE | ID: mdl-24022259

ABSTRACT

Mosasaurs are secondarily aquatic squamates that became the dominant marine reptiles in the Late Cretaceous about 98-66 million years ago. Although early members of the group possessed body shapes similar to extant monitor lizards, derived forms have traditionally been portrayed as long, sleek animals with broadened, yet ultimately tapering tails. Here we report an extraordinary mosasaur fossil from the Maastrichtian of Harrana in central Jordan, which preserves soft tissues, including high fidelity outlines of a caudal fluke and flippers. This specimen provides the first indisputable evidence that derived mosasaurs were propelled by hypocercal tail fins, a hypothesis that was previously based on comparative skeletal anatomy alone. Ecomorphological comparisons suggest that derived mosasaurs were similar to pelagic sharks in terms of swimming performance, a finding that significantly expands our understanding of the level of aquatic adaptation achieved by these seagoing lizards.


Subject(s)
Animal Fins/anatomy & histology , Ecosystem , Fossils , Preservation, Biological , Tail/anatomy & histology , Animals , Forelimb/anatomy & histology , Geological Phenomena , Image Processing, Computer-Assisted , Lizards/anatomy & histology , Skin/ultrastructure , Spectrometry, X-Ray Emission
10.
PLoS One ; 6(4): e19445, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21559386

ABSTRACT

Low concentrations of the structural protein collagen have recently been reported in dinosaur fossils based primarily on mass spectrometric analyses of whole bone extracts. However, direct spectroscopic characterization of isolated fibrous bone tissues, a crucial test of hypotheses of biomolecular preservation over deep time, has not been performed. Here, we demonstrate that endogenous proteinaceous molecules are retained in a humerus from a Late Cretaceous mosasaur (an extinct giant marine lizard). In situ immunofluorescence of demineralized bone extracts shows reactivity to antibodies raised against type I collagen, and amino acid analyses of soluble proteins extracted from the bone exhibit a composition indicative of structural proteins or their breakdown products. These data are corroborated by synchrotron radiation-based infrared microspectroscopic studies demonstrating that amino acid containing matter is located in bone matrix fibrils that express imprints of the characteristic 67 nm D-periodicity typical of collagen. Moreover, the fibrils differ significantly in spectral signature from those of potential modern bacterial contaminants, such as biofilms and collagen-like proteins. Thus, the preservation of primary soft tissues and biomolecules is not limited to large-sized bones buried in fluvial sandstone environments, but also occurs in relatively small-sized skeletal elements deposited in marine sediments.


Subject(s)
Bone and Bones/metabolism , Aniline Compounds/pharmacology , Animals , Biofilms , Bone Matrix/chemistry , Bone and Bones/chemistry , Collagen/chemistry , Humerus/pathology , Mass Spectrometry/methods , Microscopy, Confocal/methods , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Microscopy, Fluorescence/methods , Paleontology/methods , Spectrophotometry/methods , Spectrophotometry, Infrared/methods
11.
An Acad Bras Cienc ; 83(1): 221-33, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21437383

ABSTRACT

A forelimb of a new sauropod dinosaur (Angolatitan adamastor n. gen. et sp.) from the Late Turonian of Iembe (Bengo Province) represents the first dinosaur discovery in Angola, and is one of the few occurrences of sauropod dinosaurs in sub-Saharan Africa collected with good chronological controls. The marginal marine sediments yielding the specimen are reported to be late Turonian in age and, thus it represents a non-titanosaurian sauropod in sub-Saharan Africa at a time taken to be dominated by titanosaurian forms. Moreover, Angolatitan adamastor is the only basal Somphospondyli known in the Late Cretaceous which implies in the existence of relict forms in Africa.


Subject(s)
Bone and Bones/anatomy & histology , Dinosaurs/anatomy & histology , Dinosaurs/classification , Fossils , Angola , Animals , Forelimb/anatomy & histology , Paleontology , Phylogeography
12.
An. acad. bras. ciênc ; 83(1): 221-233, Mar. 2011. ilus, tab
Article in English | LILACS | ID: lil-578293

ABSTRACT

A forelimb of a new sauropod dinosaur (Angolatitan adamastor n. gen. et sp.) from the Late Turonian of Iembe (Bengo Province) represents the first dinosaur discovery in Angola, and is one of the few occurrences of sauropod dinosaurs in sub-Saharan Africa collected with good chronological controls. The marginal marine sediments yielding the specimen are reported to be late Turonian in age and, thus it represents a non-titanosaurian sauropod in sub-Saharan Africa at a time taken to be dominated by titanosaurian forms. Moreover, Angolatitan adamastor is the only basal Somphospondyli known in the Late Cretaceous which implies in the existence of relict forms in Africa.


Um membro anterior de um novo dinossauro saurópode (Angolatitan adamastor n. gen. et sp.) do Turoniano Superior de Iembe (Bengo) representa a descoberta do primeiro dinossauro em Angola e é uma das poucas ocorrências de dinossauros saurópodes na África Subsaariana recolhidos com bons controles cronológicos. Os sedimentos marinhos marginais de onde provém o espécime estão datados do Turoniano superior e, portanto, trata-se de um saurópodes não-titanossauro na África subsaariana onde predominavam titanossauros. Além disso, Angolatitan adamastor é o único Somphospondyli basal conhecido no Cretáceo Superior, o que implica a sobrevivência de formas-relíquia na África.


Subject(s)
Animals , Bone and Bones/anatomy & histology , Dinosaurs/anatomy & histology , Dinosaurs/classification , Fossils , Angola , Forelimb/anatomy & histology , Paleontology , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL
...