Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech Eng ; 143(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34159357

ABSTRACT

The urinary bladder is a highly dynamic organ that undergoes large deformations several times per day. Mechanical characteristics of the tissue are crucial in determining the function and dysfunction of the organ. Yet, literature reporting on the mechanical properties of human bladder tissue is scarce and, at times, contradictory. In this study, we focused on mechanically testing tissue from both human and pig bladders using identical protocols to validate the use of pigs as a model for the human bladder. Furthermore, we tested the effect of two treatments on tissue mechanical properties. Namely, elastase to digest elastin fibers, and oxybutynin to reduce smooth muscle cell spasticity. Additionally, mechanical properties based on the anatomical direction of testing were evaluated. We implemented two different material models to aid in the interpretation of the experimental results. We found that human tissue behaves similarly to pig tissue at high deformations (collagen-dominated behavior) while we detected differences between the species at low deformations (amorphous matrix-dominated behavior). Our results also suggest that elastin could play a role in determining the behavior of the fiber network. Finally, we confirmed the anisotropy of the tissue, which reached higher stresses in the transverse direction when compared to the longitudinal direction.


Subject(s)
Urinary Bladder
2.
J Clin Invest ; 130(10): 5444-5460, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32673290

ABSTRACT

Cells sense the extracellular environment and mechanical stimuli and translate these signals into intracellular responses through mechanotransduction, which alters cell maintenance, proliferation, and differentiation. Here we use a mouse model of trauma-induced heterotopic ossification (HO) to examine how cell-extrinsic forces impact mesenchymal progenitor cell (MPC) fate. After injury, single-cell (sc) RNA sequencing of the injury site reveals an early increase in MPC genes associated with pathways of cell adhesion and ECM-receptor interactions, and MPC trajectories to cartilage and bone. Immunostaining uncovers active mechanotransduction after injury with increased focal adhesion kinase signaling and nuclear translocation of transcriptional coactivator TAZ, inhibition of which mitigates HO. Similarly, joint immobilization decreases mechanotransductive signaling, and completely inhibits HO. Joint immobilization decreases collagen alignment and increases adipogenesis. Further, scRNA sequencing of the HO site after injury with or without immobilization identifies gene signatures in mobile MPCs correlating with osteogenesis, and signatures from immobile MPCs with adipogenesis. scATAC-seq in these same MPCs confirm that in mobile MPCs, chromatin regions around osteogenic genes are open, whereas in immobile MPCs, regions around adipogenic genes are open. Together these data suggest that joint immobilization after injury results in decreased ECM alignment, altered MPC mechanotransduction, and changes in genomic architecture favoring adipogenesis over osteogenesis, resulting in decreased formation of HO.


Subject(s)
Extremities/injuries , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/physiology , Ossification, Heterotopic/etiology , Restraint, Physical , Acyltransferases , Adipogenesis/genetics , Animals , Cell Differentiation , Cell Lineage , Disease Models, Animal , Extracellular Matrix/metabolism , Focal Adhesion Kinase 1/deficiency , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Humans , Male , Mechanotransduction, Cellular/genetics , Mechanotransduction, Cellular/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Ossification, Heterotopic/pathology , Ossification, Heterotopic/physiopathology , Osteogenesis/genetics , Restraint, Physical/adverse effects , Restraint, Physical/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL