Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361753

ABSTRACT

Reactive oxygen species (ROS) are produced by every aerobic cell during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Superoxide Dismutases (SOD) are antioxidant proteins that convert superoxide anions (O2•-) to hydrogen peroxide (H2O2) and dioxygen. Using the differential in the level of oxidative stress between normal and cancer cells, SOD mimetics can show an antitumoral effect and prevent oxaliplatin-induced peripheral neuropathy. New Pt(IV) conjugate prodrugs (OxPt-x-Mn1C1A (x = 1, 1-OH, 2)), combining oxaliplatin and a Mn SOD mimic (MnSODm Mn1C1A) with a covalent link, were designed. Their stability in buffer and in the presence of sodium ascorbate was studied. In vitro, their antitumoral activity was assessed by the viability and ROS production of tumor cell lines (CT16, HCT 116, KC) and fibroblasts (primary culture and NIH 3T3). In vivo, a murine model of colorectal cancer was created with subcutaneous injection of CT26 cells in Balb/c mice. Tumor size and volume were measured weekly in four groups: vehicle, oxaliplatin, and oxaliplatin associated with MnSODm Mn1C1A and the bis-conjugate OxPt-2-Mn1C1A. Oxaliplatin-induced peripheral neuropathy (OIPN) was assessed using a Von Frey test reflecting chronic hypoalgesia. Tolerance to treatment was assessed with a clinical score including four items: weight loss, weariness, alopecia, and diarrhea. In vitro, Mn1C1A associated with oxaliplatin and Pt(IV) conjugates treatment induced significantly higher production of H2O2 in all cell lines and showed a significant improvement of the antitumoral efficacy compared to oxaliplatin alone. In vivo, the association of Mn1C1A to oxaliplatin did not decrease its antitumoral activity, while OxPt-2-Mn1C1A had lower antitumoral activity than oxaliplatin alone. Mn1C1A associated with oxaliplatin significantly decreased OIPN and also improved global clinical tolerance of oxaliplatin. A neuroprotective effect was observed, associated with a significantly improved tolerance to oxaliplatin without impairing its antitumoral activity.


Subject(s)
Antineoplastic Agents , Peripheral Nervous System Diseases , Mice , Animals , Oxaliplatin/adverse effects , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Superoxides , Antineoplastic Agents/therapeutic use , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/pathology , Superoxide Dismutase , Mice, Inbred BALB C
2.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080244

ABSTRACT

Catalase mimics are low molecular weight metal complexes that reproduce the activity of catalase, an antioxidant metalloprotein that participates in the cellular regulation of H2O2 concentration by catalyzing its dismutation. H2O2 is a reactive oxygen species that is vital for the normal functioning of cells. However, its overproduction contributes to oxidative stress, which damages cells. Owing to their biocompatibility, peptidyl complexes are an attractive option for clinical applications to regulate H2O2 by enzyme mimics. We report here the synthesis and characterization of four new peptidyl di-copper complexes bearing two coordinating sequences. Characterization of the complexes showed that, depending on the linker used between the two coordinating sequences, their catalytic activity for H2O2 dismutation, their thermodynamic stability and their resistance to H2O2 degradation are very different, with (CATm2)Cu2 being the most promising catalyst.


Subject(s)
Copper , Hydrogen Peroxide , Antioxidants , Catalase/metabolism , Hydrogen Peroxide/metabolism , Thermodynamics
3.
Angew Chem Int Ed Engl ; 61(38): e202203066, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35672261

ABSTRACT

The detection and quantification of exogenous metal complexes are crucial to understanding their activity in intricate biological media. MnII complexes are difficult to detect and quantify because of low association constants, and high lability. The superoxide dismutase (SOD) mimic (or mimetic) labelled Mn1 is based on a 1,2-di-aminoethane functionalized with imidazole and phenolate and has good intrinsic anti-superoxide, antioxidant and anti-inflammatory activities in lipopolysaccharide (LPS)-activated intestinal epithelial HT29-MD2 cells, similar to that of its propylated analogue labelled Mn1P. Ion mobility spectrometry-mass spectrometry (IMS-MS) is a powerful technique for separating low molecular weight (LMW) metal complexes and can even separate complexes with the same ligand but bound to different divalent metal cations with similar ionic radii. We demonstrated the intracellular presence of the Mn1 and Mn1P complexes, at least partly intact, in lysates of cells incubated with the complexes and estimated the intracellular Mn1P concentration using a Co-13 C6 analogue.


Subject(s)
Coordination Complexes , Manganese , Ion Mobility Spectrometry , Manganese/chemistry , Mass Spectrometry , Metals , Molecular Weight , Superoxide Dismutase/metabolism
4.
Oxid Med Cell Longev ; 2022: 3858122, 2022.
Article in English | MEDLINE | ID: mdl-35401918

ABSTRACT

Oxidative stress is known to play a major role in the pathogenesis of inflammatory bowel diseases (IBDs), and, in particular, superoxide dismutase (SODs) defenses were shown to be weakened in patients suffering from IBDs. SOD mimics, also called SOD mimetics, as low-molecular-weight complexes reproducing the activity of SOD, constitute promising antioxidant catalytic metallodrugs in the context of IBDs. A Mn(II) complex SOD mimic (Mn1) based on an open-chain diaminoethane ligand exerting antioxidant and anti-inflammatory effects on an intestinal epithelial cellular model was shown to experience metal exchanges between the manganese center and metal ions present in the biological environment (such as Zn(II)) to some degrees. As the resulting complexes (mainly Zn(II)) were shown to be inactive, improving the kinetic inertness of Mn(II) complexes based on open-chain ligands is key to improve their bioactivity in a cellular context. We report here the study of three new Mn(II) complexes resulting from Mn1 functionalization with a cyclohexyl and/or a propyl group meant to limit, respectively, (a) metal exchanges and (b) deprotonation of an amine from the 1,2-diaminoethane central scaffold. The new manganese-based SOD mimics display a higher intrinsic SOD activity and also improved kinetic inertness in metal ion exchange processes (with Zn(II), Cu(II), Ni(II), and Co(II)). They were shown to provide anti-inflammatory and antioxidant effects in cells at lower doses than Mn1 (down to 10 µM). This improvement was due to their higher inertness against metal-assisted dissociation and not to different cellular overall accumulations. Based on its higher inertness, the SOD mimic containing both the propyl and the cyclohexyl moieties was suitable for intracellular detection and quantification by mass spectrometry, quantification, that was achieved by using a 13C-labeled Co-based analog of the SOD mimics as an external heavy standard.


Subject(s)
Inflammatory Bowel Diseases , Manganese , Antioxidants/pharmacology , Epithelial Cells , Humans , Ligands , Manganese/pharmacology , Metals , Superoxide Dismutase
5.
Curr Opin Chem Biol ; 67: 102109, 2022 04.
Article in English | MEDLINE | ID: mdl-35066373

ABSTRACT

Superoxide dismutases (SODs) are metalloproteins that protect cells against oxidative stress by controlling the concentration of superoxide (O2-) through catalysis of its dismutation. The activity of superoxide dismutases can be mimicked by low-molecular-weight complexes having potential therapeutic applications. This review presents recent strategies for designing efficient SOD mimics, from molecular metal complexes to nanomaterials. Studies of these systems in cells reveal that some SOD mimics, designed to react directly with superoxide, may also indirectly enhance the cellular antioxidant arsenal. Finally, a good understanding of the bioactivity requires information on the cell-penetration, speciation, and subcellular location of the SOD mimics: we will describe recent studies and new techniques that open opportunities for characterizing SOD mimics in biological environments.


Subject(s)
Coordination Complexes , Metalloproteins , Superoxide Dismutase , Biomimetic Materials , Catalysis , Superoxides
6.
Chemistry ; 28(15): e202104424, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35076130

ABSTRACT

Triphenylamine (TP) derivatives such as two-branch cationic vinylbenzimidazolium triphenylamine TP-2Bzim are promising turn-on fluorescent probes suitable for two-photon imaging, labelling mitochondria in live cells. Here, we designed two TP-2Bzim derivatives as bimodal probes suitable for X-ray fluorescence imaging. The conjugation of the TP core with a rhenium tricarbonyl moiety in the TP-RePyta probe altered the localisation in live cells from mitochondria to lysosomes. The introduction of bromine on the TP core generated the TP-Br probe retaining good photophysical properties and mitochondria labelling in live cells. The influence of calcium channels in the uptake of TP-Br was studied. Synchrotron Radiation X-ray Fluorescence (SXRF) imaging of bromine enabled the detection of TP-Br and suggested a negligible presence of the probe in an unbound state in the incubated cells, a crucial point in the development of these probes. This study paves the way towards the development of TP probes as specific organelle stainers suitable for SXRF imaging.


Subject(s)
Fluorescent Dyes , Photons , Microscopy, Fluorescence , Mitochondria , Optical Imaging , X-Rays
7.
Inorg Chem ; 60(13): 9309-9319, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34109781

ABSTRACT

Catalases (CAT) are antioxidant metalloenzymes necessary for life in oxygen-metabolizing cells to regulate H2O2 concentration by accelerating its dismutation. Many physiopathological situations are associated with oxidative stress resulting from H2O2 overproduction, during which antioxidant defenses are overwhelmed. We have used a combinatorial approach associated with an activity-based screening to discover a first peptidyl di-copper complex mimicking CAT. The complex was studied in detail and characterized for its CAT activity both in solutions and in cells using different analytical methods. The complex exhibited CAT activity in solutions and, more interestingly, on HyPer HeLa cells that possess a genetically encoded ratiometric fluorescent sensors of H2O2. These results highlight the efficiency of a combinatorial approach for the discovery of peptidyl complexes that exhibit catalytic activity.


Subject(s)
Antioxidants/metabolism , Catalase/metabolism , Copper/metabolism , Metalloproteins/metabolism , Peptides/metabolism , Antioxidants/chemistry , Catalase/chemistry , Copper/chemistry , HeLa Cells , Humans , Hydrogen Peroxide/metabolism , Metalloproteins/chemistry , Peptides/chemistry , Tumor Cells, Cultured
8.
J Inorg Biochem ; 219: 111431, 2021 06.
Article in English | MEDLINE | ID: mdl-33798828

ABSTRACT

Oxidative stress that results from an imbalance between the concentrations of reactive species (RS) and antioxidant defenses is associated with many pathologies. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase are among the key enzymes that maintain the low nanomolar physiological concentrations of superoxide and hydrogen peroxide. The increase in the levels of these species and their progeny could have deleterious effects. In this context, chemists have developed SOD and CAT mimics to supplement them when cells are overwhelmed with oxidative stress. However, the beneficial activity of such molecules in cells depends not only on their intrinsic catalytic activities but also on their stability in biological context, their cell penetration and their cellular localization. We have employed cellular assays to characterize several compounds that possess SOD and CAT activities and have been frequently used in cellular and animal models. We used cellular assays that address SOD and CAT activities of the compounds. Finally, we determined the effect of compounds on the suppression of the inflammation in HT29-MD2 cells challenged by lipopolysaccharide. When the assay requires penetration inside cells, the SOD mimics Mn(III) meso-tetrakis(N-(2'-n-butoxyethyl)pyridinium-2-yl)porphyrin (MnTnBuOE-2-PyP5+) and Mn(II) dichloro[(4aR,13aR,17aR,21aR)-1,2,3,4,4a,5,6,12,13,13a,14,15,16,17,17a,18,19,20,21,21a-eicosahydro-11,7-nitrilo-7Hdibenzo[b,h] [1,4, 7,10] tetraazacycloheptadecine-κN5,κN13,κN18,κN21,κN22] (Imisopasem manganese, M40403, CG4419) were found efficacious at 10 µM, while Mn(II) chloro N-(phenolato)-N,N'-bis[2-(N-methyl-imidazolyl)methyl]-ethane-1,2-diamine (Mn1) requires an incubation at 100 µM. This study thus demonstrates that MnTnBuOE-2-PyP5+, M40403 and Mn1 were efficacious in suppressing inflammatory response in HT29-MD2 cells and such action appears to be related to their ability to enter the cells and modulate reactive oxygen species (ROS) levels.


Subject(s)
Catalase/metabolism , Manganese/metabolism , Organometallic Compounds/metabolism , Superoxide Dismutase/metabolism , Animals , Antioxidants/metabolism , Cell Line , Glutathione Peroxidase/metabolism , Humans , Hydrogen Peroxide/metabolism , Metalloporphyrins/metabolism , Molecular Mimicry , Oxidation-Reduction , Oxidative Stress , Porphyrins/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism
9.
Phys Chem Chem Phys ; 22(36): 20792-20800, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32909565

ABSTRACT

The 285 GHz EPR spectra of perchlorotriphenylmethyl and tetrathiatriarylmethyl radicals in frozen solution have been accurately measured. The relationship between their molecular structures and their g-tensors has been investigated with the aid of DFT calculations, revealing that the degree of spin density delocalization away from the central methylene carbon is an important determining factor of the g-anisotropy. In particular, the small amount of spin densities on the Cl or S heteroatoms at the 2 and 6 positions with respect to the central carbon have the strongest influence. Furthermore, the amount of spin densities on these heteroatoms and thus the anisotropy can be modulated by the protonation (esterification) state of the carboxylate groups at the 4 position. These results provide unique insights into the g-anisotropy of persistent trityl radicals and how it can be tuned.

10.
Chem Commun (Camb) ; 56(57): 7885-7888, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32520039

ABSTRACT

A conjugate of a Mn-based superoxide dismutase mimic with a Re-based multimodal probe 1[combining low line] was studied in a cellular model of oxidative stress. Its speciation was investigated using Re and Mn X-fluorescence. Interestingly, 1[combining low line] shows a distribution different from its unconjugated analogue but a similar concentration in mitochondria and a similar bioactivity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Coordination Complexes/pharmacology , Rhenium/pharmacology , Superoxide Dismutase/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Humans , Molecular Structure , Oxidative Stress/drug effects , Rhenium/chemistry , Rhenium/metabolism
11.
Dalton Trans ; 49(7): 2323-2330, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32022053

ABSTRACT

A superoxide dismutase mimic (Mn1) was functionalized with three positively charged-peptides: RRRRRRRRR (Mn1-R9), RRWWWRRWRR (Mn1-RW9) or Fx-r-Fx-K (Mn1-MPP). Characterization of the physico-chemical properties of the complexes show that they share similar binding affinity for Mn2+, apparent reduction potential and intrinsic superoxide dismutase activity. However, their accumulation in cells is different (Mn1-R9 < Mn1-MPP < Mn1-RW9 < Mn1), as well as their subcellular distribution. In addition, the three functionalized-complexes display a better anti-inflammatory activity than Mn1 when assayed at 10 µM. This improvement is due to a combination of an anti-inflammatory effect of the peptidyl moiety itself, and of the SOD mimic for Mn1-RW9 and Mn1-MPP. In contrast, the enhanced anti-inflammatory activity of Mn1-R9 is solely due to the SOD mimic.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell-Penetrating Peptides/pharmacology , Superoxide Dismutase/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , HT29 Cells , Humans , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Molecular Structure , Superoxide Dismutase/chemistry , Thermodynamics
12.
Chem Commun (Camb) ; 56(3): 399-402, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31820751

ABSTRACT

A combinatorial approach using a one-bead-one-compound method and a screening based on a SOD-activity assay was set up for the discovery of an efficient peptidyl copper complex. The complex exhibited good stability constants, suitable redox potentials and excellent intrinsic activity. This complex was further assayed in cells for its antioxidant properties and showed beneficial effects when cells were subjected to oxidative stress.


Subject(s)
Biocompatible Materials/metabolism , Copper/chemistry , Peptides/chemistry , Amino Acid Sequence , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Colon/cytology , Colon/drug effects , Colon/metabolism , Copper/metabolism , HT29 Cells , Humans , Interleukin-8/metabolism , Lipopolysaccharides/toxicity , Oxidative Stress/drug effects , Peptides/metabolism , Superoxide Dismutase/metabolism
13.
Appl Spectrosc ; 74(1): 63-71, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31617373

ABSTRACT

Presented here is the exploitation of synchrotron infrared spectromicroscopy to evaluate the feasibility of monitoring the cellular uptake of rhenium-tris-carbonyl-tagged (Re(CO)3) lipophilic chains in living cells. To this aim, an in-house thermostated microfluidic device was used to limit water absorption while keeping cells alive. Indeed, cells showed a high survival rate in the microfluidic device over the course of the experiment, proving the short-term biocompatibility of the device. We recorded spectra of single, living, fully hydrated breast cancer MDA-MB231 cells and could follow the penetration of the rhenium complexes for up to 2 h. Despite the strong variations observed in the uptake kinetics between individual cells, the Re(CO)3 complex was traced inside the cells at low concentration and shown to enter them on the hour time scale by active transport.


Subject(s)
Organometallic Compounds/chemistry , Organometallic Compounds/pharmacokinetics , Spectroscopy, Fourier Transform Infrared/methods , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Kinetics , Lab-On-A-Chip Devices , Lipids/chemistry , Molecular Probes/chemistry , Molecular Probes/pharmacokinetics , Spectroscopy, Fourier Transform Infrared/instrumentation , Synchrotrons
14.
Chemistry ; 26(1): 249-258, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31710732

ABSTRACT

Superoxide dismutases (SODs) are highly efficient enzymes for superoxide dismutation and the first line of defense against oxidative stress. These metalloproteins contain a redox-active metal ion in their active site (Mn, Cu, Fe, Ni) with a tightly controlled reduction potential found in a close range around the optimal value of 0.36 V versus the normal hydrogen electrode (NHE). Rationally designed proteins with well-defined three-dimensional structures offer new opportunities for obtaining functional SOD mimics. Here, we explore four different copper-binding scaffolds: H3 (His3 ), H4 (His4 ), H2 DH (His3 Asp with two His and one Asp in the same plane) and H3 D (His3 Asp with three His in the same plane) by using the scaffold of the de novo protein GRα3 D. EPR and XAS analysis of the resulting copper complexes demonstrates that they are good CuII -bound structural mimics of Cu-only SODs. Furthermore, all the complexes exhibit SOD activity, though three orders of magnitude slower than the native enzyme, making them the first de novo copper SOD mimics.


Subject(s)
Copper/chemistry , Metalloproteins/chemistry , Peptides/chemistry , Amino Acid Sequence , Copper/metabolism , Electron Spin Resonance Spectroscopy , Enzyme Assays , Metalloproteins/metabolism , Peptides/metabolism , Protein Stability , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Temperature , Thermodynamics
15.
Oncotarget ; 10(60): 6418-6431, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31741707

ABSTRACT

By using the differential in level of oxidative status between normal and cancer cells, SuperOxide Dismutase (SOD) mimetics can have anti-tumor efficacy and prevent oxaliplatin-induced peripheral neuropathy. Our objective was to evaluate the neuroprotective efficacy of MAG, a new SOD mimic. In vitro, the effects of MAG alone or with oxaliplatin were studied on colon cancer cells (HT29 and CT26) and on normal fibroblast cells (NIH3T3). The cell viability (by crystal violet) as well as the production of reactive forms of oxygen and glutathione (by spectrofluorimetric assay) was measured. In vivo, efficacy on tumor growth was assessed in mice grafted with CT26 colon cancer cells. The effects on induced neurotoxicity were measured by specific behavioral Von Frey nociception, cold-plate tests, specific functional neuromuscular assay and electron microscopy. In vitro, MAG induced a production of hydrogen peroxide in all cells. At 24 h-incubation, MAG exhibits a cytotoxic activity in all cell lines. A cytotoxic additive effect of MAG and oxaliplatin was observed through oxidative burst. In vivo, oxaliplatin-treated mice associated with MAG did not counteract oxaliplatin's antitumoral efficacy. After 4 weeks of treatment with oxaliplatin combined with MAG, behavioral and functional tests showed a decrease in peripheral neuropathy induced by oxaliplatin in vivo. Electron microscopy analyses on sciatic nerves revealed an oxaliplatin-induced demyelination which is prevented by the association of MAG to this chemotherapy. In conclusion, MAG prevents the appearance of sensitive axonal neuropathy and neuromuscular disorders induced by oxaliplatin without affecting its antitumor activity.

16.
Inorg Chem ; 57(19): 12291-12302, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30226758

ABSTRACT

Cupredoxins are copper-dependent electron-transfer proteins that can be categorized as blue, purple, green, and red depending on the spectroscopic properties of the Cu(II) bound forms. Interestingly, despite significantly different first coordination spheres and nuclearity, all cupredoxins share a common Greek Key ß-sheet fold. We have previously reported the design of a red copper protein within a completely distinct three-helical bundle protein, α3DChC2. (1) While this design demonstrated that a ß-barrel fold was not requisite to recapitulate the properties of a native cupredoxin center, the parent peptide α3D was not sufficiently stable to allow further study through additional mutations. Here we present the design of an elongated protein GRANDα3D (GRα3D) with Δ Gu = -11.4 kcal/mol compared to the original design's -5.1 kcal/mol. Diffraction quality crystals were grown of GRα3D (a first for an α3D peptide) and solved to a resolution of 1.34 Å. Examination of this structure suggested that Glu41 might interact with the Cu in our previously reported red copper protein. The previous bis(histidine)(cysteine) site (GRα3DChC2) was designed into this new scaffold and a series of variant constructs were made to explore this hypothesis. Mutation studies around Glu41 not only prove the proposed interaction, but also enabled tuning of the constructs' hyperfine coupling constant from 160 to 127 × 10-4 cm-1. X-ray absorption spectroscopy analysis is consistent with these hyperfine coupling differences being the result of variant 4p mixing related to coordination geometry changes. These studies not only prove that an Glu41-Cu interaction leads to the α3DChC2 construct's red copper protein like spectral properties, but also exemplify the exact control one can have in a de novo construct to tune the properties of an electron-transfer Cu site.


Subject(s)
Azurin/chemistry , Bacteria/chemistry , Copper/chemistry , Amino Acid Sequence , Azurin/chemical synthesis , Models, Molecular , Nitrosomonas europaea/chemistry , Protein Structure, Secondary , Thermodynamics
17.
Dalton Trans ; 47(29): 9824-9833, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29993046

ABSTRACT

Antiproliferative activities of several members of the ferrocifen family, both in vitro and in vivo, are well documented although their precise location in cancer cells has not yet been elucidated. However, two different infrared imaging techniques have been used to map the non-cytotoxic cyrhetrenyl analogue of ferrociphenol in a single cell. This observation prompted us to tag two ferrocifens with a cyrhetrenyl unit [CpRe(CO)3; Cp = η5-cyclopentadienyl] by grafting it, via an ester bond, either to one of the phenols (4, 5) or to the hydroxypropyl chain (6). Complexes 4-6 retained a high cytotoxicity on breast cancer cells (MDA-MB-231) with IC50 values in the range 0.32-2.5 µM. Transmission IR spectroscopy was used to quantify the amount of cyrhetrenyl tag present in cells incubated with 5 or 6. The results show that after a 1-hour incubation of cells at 37 °C, complexes 5 and 6 are mainly present within cells while only a limited percentage, quantified by ICP-OES, remained in the incubation medium. AFM-IR spectroscopy, a technique coupling infrared irradiation with near-field AFM detection, was used to map the cyrhetrenyl unit in a single MDA-MB-231 cell, incubated at 37 °C for 1 hour with 10 µM of 6. The results show that signal distribution of the characteristic band of the Re(CO)3 entity at 1950 cm-1 matched those of amide and phosphate, thus indicating a location of the complex mainly in the cell nucleus.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Ferrous Compounds/chemistry , Organometallic Compounds/chemistry , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Nucleus/drug effects , Endocytosis , Humans , Inhibitory Concentration 50 , Spectroscopy, Fourier Transform Infrared
18.
Chem Sci ; 9(19): 4483-4487, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29896390

ABSTRACT

Bio-imaging techniques alternative to fluorescence microscopy are gaining increasing interest as complementary tools to visualize and analyze biological systems. Among them, X-ray fluorescence microspectroscopy provides information on the local content and distribution of heavy elements (Z ≥ 14) in cells or biological samples. In this context, similar tools to those developed for fluorescence microscopy are desired, including chemical probes or tags. In this work, we study rhenium complexes as a convenient and sensitive probe for X-ray fluorescence microspectroscopy. We demonstrate their ability to label and sense exogenously incubated or endogenous proteins inside cells.

19.
Free Radic Biol Med ; 120: 33-40, 2018 05 20.
Article in English | MEDLINE | ID: mdl-29462716

ABSTRACT

Macrophages are key players of immunity that display different functions according to their activation states. In a regenerative context, pro-inflammatory macrophages (Ly6Cpos) are involved in the mounting of the inflammatory response whereas anti-inflammatory macrophages (Ly6Cneg) dampen the inflammation and promote tissue repair. Reactive oxygen species (ROS) production is a hallmark of tissue injury and of subsequent inflammation as described in a bacterial challenge context. However, whether macrophages produce ROS following a sterile tissue injury is uncertain. In this study, we used complementary in vitro, ex vivo and in vivo experiments in mouse to show that macrophages do not release ROS following a sterile injury in skeletal muscle. Furthermore, expression profiles of genes involved in the response to oxidative stress in Ly6Cpos and Ly6Cneg macrophage subsets did not indicate any antioxidant response in this context. Finally, in vivo, pharmacological antioxidant supplementation with N-Acetyl-cysteine (NAC) following skeletal muscle injury did not alter macrophage phenotype during skeletal muscle regeneration. Overall, these results indicate that following a sterile injury, macrophage-derived ROS release is not involved in the regulation of the inflammatory response in the regenerating skeletal muscle.


Subject(s)
Antioxidants/metabolism , Macrophages/metabolism , Muscle, Skeletal/injuries , Muscle, Skeletal/physiology , Regeneration/physiology , Animals , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Superoxides/metabolism
20.
Chemistry ; 24(20): 5095-5099, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29334419

ABSTRACT

Alzheimer's disease and oxidative stress are connected. In the present communication, we report the use of a MnII -based superoxide dismutase (SOD) mimic ([MnII (L)]+ , 1+ ) as a pro-drug candidate to target CuII -associated events, namely, CuII -induced formation of reactive oxygen species (ROS) and modulation of the amyloid-ß (Aß) peptide aggregation. Complex 1+ is able to remove CuII from Aß, stop ROS and prevent alteration of Aß aggregation as would do the corresponding free ligand LH. Using 1+ instead of LH in further biological applications would have the double advantage to avoid the cell toxicity of LH and to benefit from its proved SOD-like activity.


Subject(s)
Alzheimer Disease/drug therapy , Copper/chemistry , Models, Molecular , Prodrugs/chemistry , Superoxide Dismutase/chemistry , Amyloid beta-Peptides/chemistry , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Oxidative Stress , Protein Aggregates , Protein Binding , Protein Conformation , Reactive Oxygen Species/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...