Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Hum Genet ; 127(5): 595-602, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20182747

ABSTRACT

Controversy remains as to which gene at the chromosome 10q26 locus confers risk for age-related macular degeneration (AMD) and statistical genetic analysis is confounded by the strong linkage disequilibrium (LD) across the region. Functional analysis of related genetic variations could solve this puzzle. Recently, Fritsche et al. reported that AMD is associated with unstable ARMS2 transcripts possibly caused by a complex insertion/deletion (indel; consisting of a 443 bp deletion and an adjacent 54 bp insertion) in its 3'UTR (untranslated region). To validate this indel, we sequenced our samples. We found that this indel is even more complex and is composed of two side-by-side indels separated by 17 bp: (1) 9 bp deletion with 10 bp insertion; (2) 417 bp deletion with 27 bp insertion. The indel is significantly associated with the risk of AMD, but is also in strong LD with the non-synonymous single nucleotide polymorphism rs10490924 (A69S). We also found that ARMS2 is expressed not only in placenta and retina but also in multiple human tissues. Using quantitative PCR, we found no correlation between the indel and ARMS2 mRNA level in human retina and blood samples. The lack of functional effects of the 3'UTR indel, the amino acid substitution of rs10490924 (A69S), and strong LD between them suggest that A69S, not the indel, is the variant that confers risk of AMD. To our knowledge, it is the first time it has been shown that ARMS2 is widely expressed in human tissues. Conclusively, the indel at 3'UTR of ARMS2 actually contains two side-by-side indels. The indels are associated with risk of AMD, but not correlated with ARMS2 mRNA level.


Subject(s)
3' Untranslated Regions/genetics , INDEL Mutation , Macular Degeneration/genetics , Proteins/genetics , Aged , Aged, 80 and over , Base Sequence , Case-Control Studies , Female , Gene Expression Regulation , Genotype , Humans , Male , Polymerase Chain Reaction , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Tissue Distribution
2.
Invest Ophthalmol Vis Sci ; 51(4): 1873-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19933179

ABSTRACT

Purpose. To investigate whether female reproductive history and hormone replacement therapy (HRT) or birth control pills (BCPs) influence risk for age-related macular degeneration (AMD) and whether genetic factors interact with HRT to modulate AMD risk. Methods. Related and unrelated female participants (n = 799) were examined and data were analyzed with generalized estimating equations with adjustment for age and smoking. Individuals with AMD grades 1 to 2 were considered to be unaffected (n = 239) and those with grades 3 to 5 were considered affected (n = 560). Results. When comparing all cases with controls, significant inverse associations were observed for HRT (odds ratio [OR] = 0.65, 95% CI 0.48-0.90, P = 0.008) and BCPs (OR = 0.60, 95% CI 0.36-0.10, P = 0.048). When analyses were stratified by AMD severity (early versus geographic atrophy versus neovascular), the inverse association remained significant (HRT OR = 0.45, 95% CI 0.30-0.66, P < 0.0001; BCP OR = 0.55, 95% CI 0.32-0.96, P = 0.036) only when comparing neovascular AMD with the control. All pair-wise HRT-genotype and BCP-genotype interactions were examined, to determine whether HRT or BCP modifies the effect of established genetic risk factors. The strongest interactions were observed for HRT x ARMS2 coding SNP (R73H) rs10490923 (P = 0.007) and HRT x ARMS2 intronic SNP rs17623531 (P = 0.019). Conclusions. These findings provide the first evidence suggesting that ARMS2 interacts with HRT to modulate AMD risk and are consistent with previous reports demonstrating a protective relationship between exogenous estrogen use and neovascular AMD. These results highlight the genetic and environmental complexity of the etiologic architecture of AMD; however, further replication is necessary to validate them.


Subject(s)
Contraceptives, Oral , Estrogen Replacement Therapy , Estrogens/therapeutic use , Macular Degeneration/prevention & control , Polymorphism, Single Nucleotide/genetics , Proteins/genetics , Reproductive History , Aged , Female , Genotype , Humans , Macular Degeneration/genetics , Odds Ratio , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL