Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 147(7): 1417-1424, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35244649

ABSTRACT

Resistive pulse sensors have been used to characterise everything from whole cells to small molecules. Their integration into microfluidic devices has simplified sample handling whilst increasing throughput. Typically, these devices measure a limited size range, making them prone to blockages in complex sample matrixes. To prolong their life and facilitate their use, samples are often filtered or prepared to match the sample with the sensor diameter. Here, we advance our tuneable flow resistive pulse sensor which utilises additively manufactured parts. The sensor allows parts to be easily changed, washed and cleaned, its simplicity and versatility allow components from existing nanopore fabrication techniques such as glass pipettes to be integrated into a single device. This creates a multi-nanopore sensor that can simultaneously measure particles from 0.1 to 30 µm in diameter. The orientation and controlled fluid flow in the device allow the sensors to be placed in series, whereby smaller particles can be measured in the presence of larger ones without the risk of being blocked. We illustrate the concept of a multi-pore flow resistive pulse sensor, by combining an additively manufactured tuneable sensor, termed sensor 1, with a fixed nanopore sensor, termed sensor 2. Sensor 1 measures particles as small as 10 µm in diameter, whilst sensor 2 can be used to characterise particles as small as 100 nm, depending upon its dimensions. We illustrate the dual pore sensor by measuring 1 and 10 µm particles simultaneously.


Subject(s)
Microfluidic Analytical Techniques , Nanopores , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Microfluidics , Particle Size
2.
ACS Sens ; 5(8): 2578-2586, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32638589

ABSTRACT

Technologies that can detect and characterize particulates in liquids have applications in health, food, and environmental monitoring. Simply counting the numbers of cells or particles is not sufficient for most applications; other physical properties must also be measured. Typically, it is necessary to compromise between the speed of a sensor and its chemical and biological specificity. Here, we present a low-cost and high-throughput multiuse counter that classifies a particle's size, concentration, and shape. We also report how the porosity/conductivity or the particle can influence the signal. Using an additive manufacturing process, we have assembled a reusable flow resistive pulse sensor capable of being tuned in real time to measure particles from 2 to 30 µm across a range of salt concentrations, i.e., 2.5 × 10-4 to 0.1 M. The device remains stable for several days with repeat measurements. We demonstrate its use for characterizing algae with spherical and rod structures as well as microplastics shed from tea bags. We present a methodology that results in a specific signal for microplastics, namely, a conductive pulse, in contrast to particles with smooth surfaces such as calibration particles or algae, allowing the presence of microplastics to be easily confirmed and quantified. In addition, the shapes of the signal and of the particle are correlated, giving an extra physical property to characterize suspended particulates. The technology can rapidly screen volumes of liquid, 1 mL/min, for the presence of microplastics and algae.


Subject(s)
Microplastics , Plastics , Environmental Monitoring , Microfluidics , Particle Size
3.
Anal Chem ; 91(4): 2947-2954, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30652483

ABSTRACT

Resistive pulse sensors (RPSs) provide detailed characterization of materials from the nanoparticle up to large biological cells on a particle-to-particle basis. During the RPS experiment, particles pass through a channel or pore that conducts ions, and the change in the ionic current versus time is monitored. The change in current during each translocation, also known as a "pulse", is dependent on the ratio of the particle and channel dimensions. Here we present a facile and rapid method for producing flow-RPSs that do not require lithographic processes. The additively manufactured sensor has channel dimensions that can be easily controlled. In addition, the fabrication process allows the sensor to be quickly assembled, disassembled, cleaned, and reused. Furthermore, the RPS can be created with a direct interface for fluidic pumps or imaging window for complementary optical microscopy. We present experiments and simulations of the RPS, showing how the pulse shapes are dependent on the channel morphology and how the device can count and size particles across a range of flow rates and ionic strengths. The use of pressure-driven fluid flow through the device allowed a rapid characterization of particles down to concentrations as low as 1 × 10-3 particles per mL, which equated to one event per second.


Subject(s)
Microfluidic Analytical Techniques , Nanoparticles/chemistry , Microfluidic Analytical Techniques/instrumentation , Osmolar Concentration , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...