Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Int J Part Ther ; 11: 100009, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38757075

ABSTRACT

Purpose: The effectiveness of intensity-modulated proton therapy (IMPT) for esophageal cancer treated with definitive concurrent chemoradiation therapy remains inadequately explored. We investigated long-term outcomes and toxicity experienced by patients who received IMPT as part of definitive esophageal cancer treatment. Patients and Methods: We retrospectively identified and analyzed 34 patients with locally advanced esophageal cancer who received IMPT with concurrent chemotherapy as a definitive treatment regimen at The University of Texas MD Anderson Cancer Center from 2011 to 2021. The median IMPT dose was 50.4 GyRBE in 28 fractions; concurrent chemotherapy consisted of fluorouracil and/or taxane and/or platinum. Survival outcomes were determined by the Kaplan-Meier method, and toxicity was scored according to the Common Terminology Criteria for Adverse Events version 4.0. Results: The median age of all patients was 71.5 years. Most patients had stage III (cT3 cM0) adenocarcinoma of the lower esophagus. At a median follow-up time of 39 months, the 5-year overall survival rate was 41.1%; progression-free survival, 34.6%; local regional recurrence-free survival, 78.1%; and distant metastasis-free survival, 65.0%. Common acute chemoradiation therapy-related toxicities included hematologic toxicity, esophagitis (and late-onset), fatigue, weight loss, and nausea (and late-onset); grade 3 toxicity rates were 26.0% for hematologic, 18.0% for esophagitis and 9.0% for nausea. No patient had grade ≥3 wt loss or radiation pneumonitis, and no patients had pulmonary fibrosis or esophageal fistula. No grade ≥4 events were observed except for hematologic toxicity (lymphopenia) in 2 patients. Conclusion: Long-term survival and toxicity were excellent after IMPT for locally advanced esophageal cancer treated definitively with concurrent chemoradiation therapy. When available, IMPT should be offered to such patients to minimize treatment-related cardiopulmonary toxicity without sacrificing outcomes.

2.
J Appl Clin Med Phys ; 25(5): e14318, 2024 May.
Article in English | MEDLINE | ID: mdl-38427776

ABSTRACT

PURPOSE: To quantify the impact of treatment planning system beam model parameters, based on the actual spread in radiotherapy community data, on clinical treatment plans and determine which complexity metrics best describe the impact beam modeling errors have on dose accuracy. METHODS: Ten beam modeling parameters for a Varian accelerator were modified in RayStation to match radiotherapy community data at the 2.5, 25, 50, 75, and 97.5 percentile levels. These modifications were evaluated on 25 patient cases, including prostate, non-small cell lung, H&N, brain, and mesothelioma, generating 1,000 plan perturbations. Differences in the mean planned dose to clinical target volumes (CTV) and organs at risk (OAR) were evaluated with respect to the planned dose using the reference (50th-percentile) parameter values. Correlation between CTV dose differences, and 18 different complexity metrics were evaluated using linear regression; R-squared values were used to determine the best metric. RESULTS: Perturbations to MLC offset and transmission parameters demonstrated the greatest changes in dose: up to 5.7% in CTVs and 16.7% for OARs. More complex clinical plans showed greater dose perturbation with atypical beam model parameters. The mean MLC Gap and Tongue & Groove index (TGi) complexity metrics best described the impact of TPS beam modeling variations on clinical dose delivery across all anatomical sites; similar, though not identical, trends between complexity and dose perturbation were observed among all sites. CONCLUSION: Extreme values for MLC offset and MLC transmission beam modeling parameters were found to most substantially impact the dose distribution of clinical plans and careful attention should be given to these beam modeling parameters. The mean MLC Gap and TGi complexity metrics were best suited to identifying clinical plans most sensitive to beam modeling errors; this could help provide focus for clinical QA in identifying unacceptable plans.


Subject(s)
Neoplasms , Organs at Risk , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk/radiation effects , Neoplasms/radiotherapy , Particle Accelerators/instrumentation , Algorithms
3.
Article in English | MEDLINE | ID: mdl-38387813

ABSTRACT

PURPOSE: Women remain underrepresented in medical physics in the United States, and determinants of persisting disparities remain unclear. Here, we performed a detailed investigation of American Association of Physicists in Medicine (AAPM) membership trajectories to evaluate trends in Full membership with respect to gender, age, and highest degree. METHODS AND MATERIALS: Membership data, including gender, date of birth, highest degree, membership type, and years of active membership for 1993 to 2023 were obtained from AAPM. Group 1 included Full members who joined AAPM in 1993 or later. A subset of group 1 including only members who joined and left AAPM since 1993 (former members, group 1F) was used to calculate age at membership cessation and duration. Results were compared by gender and highest degree. A Kaplan-Meier analysis was also used to evaluate membership "survival" by age and highest degree. RESULTS: Complete data were available for 6647 current and former Full members (group 1), including 2211 former members (group 1F). On average, women became Full members at a significantly younger age than men (34.6 vs 37.5 years of age, P < .001) and ended their memberships (if applicable) at a significantly younger age than men (46.1 vs 50.1 years of age, P < .001). The Kaplan-Meier "survival" analysis showed that for a given age, women were at a significantly greater risk of membership cessation than men, and women with master's degrees had the lowest membership survival of any gender/degree subgroup. When analyzing by membership duration, there was no difference in survival by gender alone. Still, women with PhDs were found to have the greatest membership survival among gender/degree subgroups. CONCLUSIONS: Both gender and degree type influenced AAPM membership trajectories. Although we have offered a discussion of possible explanations, qualitative data collected from both continuing and departing AAPM members will be critical in the ongoing journey toward gender parity in the profession of medical physics.

4.
Int J Radiat Oncol Biol Phys ; 118(1): 231-241, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37552151

ABSTRACT

PURPOSE: The aim of this study was to investigate the dosimetric and clinical effects of 4-dimensional computed tomography (4DCT)-based longitudinal dose accumulation in patients with locally advanced non-small cell lung cancer treated with standard-fractionated intensity-modulated radiation therapy (IMRT). METHODS AND MATERIALS: Sixty-seven patients were retrospectively selected from a randomized clinical trial. Their original IMRT plan, planning and verification 4DCTs, and ∼4-month posttreatment follow-up CTs were imported into a commercial treatment planning system. Two deformable image registration algorithms were implemented for dose accumulation, and their accuracies were assessed. The planned and accumulated doses computed using average-intensity images or phase images were compared. At the organ level, mean lung dose and normal-tissue complication probability (NTCP) for grade ≥2 radiation pneumonitis were compared. At the region level, mean dose in lung subsections and the volumetric overlap between isodose intervals were compared. At the voxel level, the accuracy in estimating the delivered dose was compared by evaluating the fit of a dose versus radiographic image density change (IDC) model. The dose-IDC model fit was also compared for subcohorts based on the magnitude of NTCP difference (|ΔNTCP|) between planned and accumulated doses. RESULTS: Deformable image registration accuracy was quantified, and the uncertainty was considered for the voxel-level analysis. Compared with planned doses, accumulated doses on average resulted in <1-Gy lung dose increase and <2% NTCP increase (up to 8.2 Gy and 18.8% for a patient, respectively). Volumetric overlap of isodose intervals between the planned and accumulated dose distributions ranged from 0.01 to 0.93. Voxel-level dose-IDC models demonstrated a fit improvement from planned dose to accumulated dose (pseudo-R2 increased 0.0023) and a further improvement for patients with ≥2% |ΔNTCP| versus for patients with <2% |ΔNTCP|. CONCLUSIONS: With a relatively large cohort, robust image registrations, multilevel metric comparisons, and radiographic image-based evidence, we demonstrated that dose accumulation more accurately represents the delivered dose and can be especially beneficial for patients with greater longitudinal response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Retrospective Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Four-Dimensional Computed Tomography/methods
5.
Front Oncol ; 13: 1221792, 2023.
Article in English | MEDLINE | ID: mdl-37810961

ABSTRACT

Purpose: Treatment planning for craniospinal irradiation (CSI) is complex and time-consuming, especially for resource-constrained centers. To alleviate demanding workflows, we successfully automated the pediatric CSI planning pipeline in previous work. In this work, we validated our CSI autosegmentation and autoplanning tool on a large dataset from St. Jude Children's Research Hospital. Methods: Sixty-three CSI patient CT scans were involved in the study. Pre-planning scripts were used to automatically verify anatomical compatibility with the autoplanning tool. The autoplanning pipeline generated 15 contours and a composite CSI treatment plan for each of the compatible test patients (n=51). Plan quality was evaluated quantitatively with target coverage and dose to normal tissue metrics and qualitatively with physician review, using a 5-point Likert scale. Three pediatric radiation oncologists from 3 institutions reviewed and scored 15 contours and a corresponding composite CSI plan for the final 51 test patients. One patient was scored by 3 physicians, resulting in 53 plans scored total. Results: The algorithm automatically detected 12 incompatible patients due to insufficient junction spacing or head tilt and removed them from the study. Of the 795 autosegmented contours reviewed, 97% were scored as clinically acceptable, with 92% requiring no edits. Of the 53 plans scored, all 51 brain dose distributions were scored as clinically acceptable. For the spine dose distributions, 92%, 100%, and 68% of single, extended, and multiple-field cases, respectively, were scored as clinically acceptable. In all cases (major or minor edits), the physicians noted that they would rather edit the autoplan than create a new plan. Conclusions: We successfully validated an autoplanning pipeline on 51 patients from another institution, indicating that our algorithm is robust in its adjustment to differing patient populations. We automatically generated 15 contours and a comprehensive CSI treatment plan for each patient without physician intervention, indicating the potential for increased treatment planning efficiency and global access to high-quality radiation therapy.

7.
Int J Radiat Oncol Biol Phys ; 116(5): 1202-1217, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37121362

ABSTRACT

FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.


Subject(s)
Credentialing , Electrons , Humans , Health Facilities , Patient Positioning , Technology , Radiotherapy Dosage
8.
J Appl Clin Med Phys ; 24(7): e13956, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36917640

ABSTRACT

PURPOSE: Target delineation for radiation therapy is a time-consuming and complex task. Autocontouring gross tumor volumes (GTVs) has been shown to increase efficiency. However, there is limited literature on post-operative target delineation, particularly for CT-based studies. To this end, we trained a CT-based autocontouring model to contour the post-operative GTV of pediatric patients with medulloblastoma. METHODS: One hundred four retrospective pediatric CT scans were used to train a GTV auto-contouring model. Eighty patients were then preselected for contour visibility, continuity, and location to train an additional model. Each GTV was manually annotated with a visibility score based on the number of slices with a visible GTV (1 = < 25%, 2 = 25-50%, 3 = > 50-75%, and 4 = > 75-100%). Contrast and the contrast-to-noise ratio (CNR) were calculated for the GTV contour with respect to a cropped background image. Both models were tested on the original and pre-selected testing sets. The resulting surface and overlap metrics were calculated comparing the clinical and autocontoured GTVs and the corresponding clinical target volumes (CTVs). RESULTS: Eighty patients were pre-selected to have a continuous GTV within the posterior fossa. Of these, 7, 41, 21, and 11 were visibly scored as 4, 3, 2, and 1, respectively. The contrast and CNR removed an additional 11 and 20 patients from the dataset, respectively. The Dice similarity coefficients (DSC) were 0.61 ± 0.29 and 0.67 ± 0.22 on the models without pre-selected training data and 0.55 ± 13.01 and 0.83 ± 0.17 on the models with pre-selected data, respectively. The DSC on the CTV expansions were 0.90 ± 0.13. CONCLUSION: We successfully automatically contoured continuous GTVs within the posterior fossa on scans that had contrast > ± 10 HU. CT-Based auto-contouring algorithms have potential to positively impact centers with limited MRI access.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Child , Medulloblastoma/diagnostic imaging , Medulloblastoma/radiotherapy , Medulloblastoma/surgery , Retrospective Studies , Algorithms , Cerebellar Neoplasms/diagnostic imaging , Cerebellar Neoplasms/radiotherapy , Cerebellar Neoplasms/surgery , Tomography, X-Ray Computed/methods , Radiotherapy Planning, Computer-Assisted/methods
9.
Int J Radiat Oncol Biol Phys ; 116(2): 305-313, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36724859

ABSTRACT

PURPOSE: In 2021, the Canadian Organization of Medical Physicists (COMP) conducted its first equity, diversity, and inclusion Climate Survey. The membership's experiences of inclusion, belonging, professional opportunities, discrimination, microaggressions, racism, and harassment in their professional lives are presented. METHODS AND MATERIALS: The ethics-reviewed survey was distributed in English and French to full members of COMP. Participants responded to questions covering demographics and professional climate. Simple descriptive statistics were used to measure frequency of responses. Data pertaining to impressions on the climate within the profession were compared using nonparametric statistical tests. RESULTS: The survey was distributed to 649 eligible members; 243 (37%) responded, and 214 (33%) provided full response sets. From the full response sets, findings showed that in general, age, highest academic degree, and racial and ethnic distribution trends of medical physicists were comparable with previously collected data and/or the Canadian population. The experiences of respondents relating to harassment in the workplace and perception of climate are reported and provide a useful benchmark for future assessments of interventions or training programs. In the workplace, fewer women (58%) reported having professional opportunities compared with men (70%). The survey also found that 17% of respondents (most of whom were women) directly or indirectly experienced sexual harassment in the workplace within the past 5 years. Finding that 23% of survey respondents identified as having a disability is a valuable reminder that accommodations in the workplace are necessary for more than 1 in every 5 medical physicists working in clinics. CONCLUSIONS: This study provided insight into the diversity and experiences of medical physicists in Canada. The majority of respondents had positive perceptions about their professional environment. However, equity-lacking groups were identified, such as women, underrepresented minorities, Indigenous peoples, and people with visible and invisible disabilities.


Subject(s)
Diversity, Equity, Inclusion , Sexual Harassment , Male , Humans , Female , Canada , Surveys and Questionnaires , Attitude
10.
Radiother Oncol ; 182: 109577, 2023 05.
Article in English | MEDLINE | ID: mdl-36841341

ABSTRACT

AIM OF THE STUDY: To elucidate the important factors and their interplay that drive performance on IMRT phantoms from the Imaging and Radiation Oncology Core (IROC). METHODS: IROC's IMRT head and neck phantom contains two targets and an organ at risk. Point and 2D dose are measured by TLDs and film, respectively. 1,542 irradiations between 2012-2020 were retrospectively analyzed based on output parameters, complexity metrics, and treatment parameters. Univariate analysis compared parameters based on pass/fail, and random forest modeling was used to predict output parameters and determine the underlying importance of the variables. RESULTS: The average phantom pass rate was 92% and has not significantly improved over time. The step-and-shoot irradiation technique had significantly lower pass rates that significantly affected other treatment parameters' pass rates. The complexity of plans has significantly increased with time, and all aperture-based complexity metrics (except MCS) were associated with the probability of failure. Random forest-based prediction of failure had an accuracy of 98% on held-out test data not used in model training. While complexity metrics were the most important contributors, the specific metric depended on the set of treatment parameters used during the irradiation. CONCLUSION: With the prevalence of errors in radiotherapy, understanding which parameters affect treatment delivery is vital to improve patient treatment. Complexity metrics were strongly predictive of irradiation failure; however, they are dependent on the specific treatment parameters. In addition, the use of one complexity metric is insufficient to monitor all aspects of the treatment plan.


Subject(s)
Radiation Oncology , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging , Radiotherapy Dosage , Machine Learning
11.
Pediatr Blood Cancer ; 70(3): e30164, 2023 03.
Article in English | MEDLINE | ID: mdl-36591994

ABSTRACT

PURPOSE: Pediatric patients with medulloblastoma in low- and middle-income countries (LMICs) are most treated with 3D-conformal photon craniospinal irradiation (CSI), a time-consuming, complex treatment to plan, especially in resource-constrained settings. Therefore, we developed and tested a 3D-conformal CSI autoplanning tool for varying patient lengths. METHODS AND MATERIALS: Autocontours were generated with a deep learning model trained:tested (80:20 ratio) on 143 pediatric medulloblastoma CT scans (patient ages: 2-19 years, median = 7 years). Using the verified autocontours, the autoplanning tool generated two lateral brain fields matched to a single spine field, an extended single spine field, or two matched spine fields. Additional spine subfields were added to optimize the corresponding dose distribution. Feathering was implemented (yielding nine to 12 fields) to give a composite plan. Each planning approach was tested on six patients (ages 3-10 years). A pediatric radiation oncologist assessed clinical acceptability of each autoplan. RESULTS: The autocontoured structures' average Dice similarity coefficient ranged from .65 to .98. The average V95 for the brain/spinal canal for single, extended, and multi-field spine configurations was 99.9% ± 0.06%/99.9% ± 0.10%, 99.9% ± 0.07%/99.4% ± 0.30%, and 99.9% ± 0.06%/99.4% ± 0.40%, respectively. The average maximum dose across all field configurations to the brainstem, eyes (L/R), lenses (L/R), and spinal cord were 23.7 ± 0.08, 24.1 ± 0.28, 13.3 ± 5.27, and 25.5 ± 0.34 Gy, respectively (prescription = 23.4 Gy/13 fractions). Of the 18 plans tested, all were scored as clinically acceptable as-is or clinically acceptable with minor, time-efficient edits preferred or required. No plans were scored as clinically unacceptable. CONCLUSION: The autoplanning tool successfully generated pediatric CSI plans for varying patient lengths in 3.50 ± 0.4 minutes on average, indicating potential for an efficient planning aid in a resource-constrained settings.


Subject(s)
Cerebellar Neoplasms , Craniospinal Irradiation , Medulloblastoma , Radiotherapy, Conformal , Humans , Child , Child, Preschool , Adolescent , Young Adult , Adult , Medulloblastoma/radiotherapy , Radiotherapy Planning, Computer-Assisted , Cerebellar Neoplasms/diagnostic imaging , Cerebellar Neoplasms/radiotherapy , Radiotherapy Dosage
12.
Int J Radiat Oncol Biol Phys ; 116(1): 103-114, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36526234

ABSTRACT

Radiation oncology clinical trials lack full representation of the ethnic and racial diversity present in the general United States and in the cancer patient population. There are low rates of both recruitment and enrollment of individuals from underrepresented ethnic and racial backgrounds, especially Black and Hispanic patients, people with disabilities, and patients from underrepresented sexual and gender groups. Even if approached for enrollment, barriers such as mistrust in medical research stemming from historical abuse and contemporary biased systems, low socioeconomic status, and lack of awareness prohibit historically marginalized populations from participating in clinical trials. In this review, we reflect on these specific barriers and detail approaches to increase diversity of the patient population in radiation oncology clinical trials to better reflect the communities we serve. We hope that implementation of these approaches will increase the diversity of clinical trials patient populations in not only radiation oncology but also other medical specialties.


Subject(s)
Clinical Trials as Topic , Cultural Diversity , Neoplasms , Radiation Oncology , Humans , Hispanic or Latino , Minority Groups , Neoplasms/ethnology , Neoplasms/radiotherapy , Racial Groups , United States , Black or African American
13.
Adv Radiat Oncol ; 8(1): 101057, 2023.
Article in English | MEDLINE | ID: mdl-36213550

ABSTRACT

Purpose: While disparities in the inclusion and advancement of women and minorities in science, technology, engineering, mathematics, and medical fields have been well documented, less work has focused on medical physics specifically. In this study, we evaluate historical and current diversity within the medical physics workforce, in cohorts representative of professional advancement (PA) in the field, and within National Institutes of Health (NIH)-funded medical physics research activities. Methods and Materials: The 2020 American Association of Physicists in Medicine (AAPM) membership was queried as surrogate for the medical physics workforce. Select subsets of the AAPM membership were queried as surrogate for PA and early career professional advancement (ECPA) in medical physics. Self-reported AAPM-member demographics data representative of study analysis groups were identified and analyzed. Demographic characteristics of the 2020 AAPM membership were compared with those of the PA and ECPA cohorts and United States (US) population. The AAPM-NIH Research Database was appended with principal investigator (PI) demographics data and analyzed to evaluate trends in grant allocation by PI demographic characteristics. Results: Women, Hispanic/Latinx/Spanish individuals, and individuals reporting a race other than White or Asian alone comprised 50.8%, 18.7%, and 32.4% of the US population, respectively, but only 23.9%, 9.1%, and 7.9% of the 2020 AAPM membership, respectively. In general, representation of women and minorities was further decreased in the PA cohort; however, significantly higher proportions of women (P < .001) and Hispanic/Latinx/Spanish members (P < .05) were observed in the ECPA cohort than the 2020 AAPM membership. Analysis of historical data revealed modest increases in diversity within the AAPM membership since 2002. Across NIH grants awarded to AAPM members between 1985 and 2020, only 9.4%, 5.3%, and 1.7% were awarded to women, Hispanic/Latinx/Spanish, and non-White, non-Asian PIs, respectively. Conclusions: Diversity within medical physics is limited. Proactive policy should be implemented to ensure diverse, equitable, and inclusive representation within research activities, roles representative of PA, and the profession at large.

14.
Int J Radiat Oncol Biol Phys ; 116(2): 295-304, 2023 06 01.
Article in English | MEDLINE | ID: mdl-35235854

ABSTRACT

PURPOSE: The American Association of Physicists in Medicine (AAPM) shares the results, conclusions, and recommendations from the initial Equity, Diversity, and Inclusion Climate Survey conducted in 2021. METHODS AND MATERIALS: The climate survey targeted medical physicists who are full members of the AAPM and included demographic inquiries and questions intended to assess the working environmental climate in terms of a sense of belonging and inclusion, experiences of discrimination and harassment, and obstacles to participation within the AAPM. The survey invitation was sent to 5,500 members. Responses were collected from 1385 members (response rate of 25%) between January and February 2021. RESULTS: Overall, the medical physics workplace climate was positive. However, some demographic and professional subgroups reported lower levels of agreement with positive characteristics of their workplace climates. Compared with men, women ranked lower 7 of 8 categories that characterized the workplace climate. Other subgroups that also ranked the workplace climate descriptors lower included individuals not originally from the United States and Canada (3/8). Most respondents strongly agreed/agreed that the climate within the AAPM was welcoming. However, 17% of respondents reported personally experiencing or witnessing microaggressions within the AAPM. Overall, medical physicists reported low levels of agreement that opportunities within the AAPM were available to them, from 34% to 60% among 8 categories, including opportunities to volunteer, join committees, and compete for leadership positions within the AAPM. Several subgroups reported even lower levels of agreement that these opportunities are available. Asian and Asian American respondents (3/8) and physicists with origins in countries outside the United States and Canada (7/8) reported fewer opportunities to participate in the AAPM. Medical physicists reported their experiences of discrimination and sexual harassment in their workplaces and within the AAPM. For those who reported personal experiences of sexual harassment, only 24% (15/63) felt comfortable reporting when it occurred within their workplaces, and 35% (9/26) felt comfortable reporting when it occurred within the AAPM. CONCLUSIONS: The report concludes with several recommendations for action.


Subject(s)
Medicine , Sexual Harassment , Male , Humans , Female , United States , Health Physics , Diversity, Equity, Inclusion , Surveys and Questionnaires
15.
Med Phys ; 50(1): 323-329, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35978544

ABSTRACT

BACKGROUND: Successful generation of biomechanical-model-based deformable image registration (BM-DIR) relies on user-defined parameters that dictate surface mesh quality. The trial-and-error process to determine the optimal parameters can be labor-intensive and hinder DIR efficiency and clinical workflow. PURPOSE: To identify optimal parameters in surface mesh generation as boundary conditions for a BM-DIR in longitudinal liver and lung CT images to facilitate streamlined image registration processes. METHODS: Contrast-enhanced CT images of 29 colorectal liver cancer patients and end-exhale four-dimensional CT images of 26 locally advanced non-small cell lung cancer patients were collected. Different combinations of parameters that determine the triangle mesh quality (voxel side length and triangle edge length) were investigated. The quality of DIRs generated using these parameters was evaluated with metrics for geometric accuracy, robustness, and efficiency. Metrics for geometric accuracy included target registration error (TRE) of internal vessel bifurcations, dice similar coefficient (DSC), mean distance to agreement (MDA), Hausdorff distance (HD) for organ contours, and number of vertices in the triangle mesh. American Association of Physicists in Medicine Task Group 132 was used to ensure parameters met TRE, DSC, MDA recommendations before the comparison among the parameters. Robustness was evaluated as the success rate of DIR generation, and efficiency was evaluated as the total time to generate boundary conditions and compute finite element analysis. RESULTS: Voxel side length of 0.2 cm and triangle edge length of 3 were found to be the optimal parameters for both liver and lung, with success rate of 1.00 and 0.98 and average DIR computation time of 100 and 143 s, respectively. For this combination, the average TRE, DSC, MDA, and HD were 0.38-0.40, 0.96-0.97, 0.09-0.12, and 0.87-1.17 mm, respectively. CONCLUSION: The optimal parameters were found for the analyzed patients. The decision-making process described in this study serves as a recommendation for BM-DIR algorithms to be used for liver and lung. These parameters can facilitate consistence in the evaluation of published studies and more widespread utilization of BM-DIR in clinical practice.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Four-Dimensional Computed Tomography
16.
Radiother Oncol ; 166: 8-14, 2022 01.
Article in English | MEDLINE | ID: mdl-34748857

ABSTRACT

BACKGROUND & PURPOSE: To evaluate treatment planning system (TPS) beam modeling parameters as contributing factors to IMRT audit performance. MATERIALS & METHODS: We retrospectively analyzed IROC Houston phantom audit performance and concurrent beam modeling survey responses from 337 irradiations performed between August 2017 and November 2019. Irradiation results were grouped based on the reporting of typical or atypical beam modeling parameter survey responses (<10th or >90th percentile values), and compared for passing versus failing (>7% error) or "poor" (>5% error) irradiation status. Additionally, we assessed the impact on the planned dose distribution from variations in modeling parameter value. Finally, we estimated the overall impact of beam modeling parameter variance on dose calculations, based on reported community variations. RESULTS: Use of atypical modeling parameters were more frequently seen with failing phantom audit results (p = 0.01). Most pronounced was for Eclipse AAA users, where phantom irradiations with atypical values of dosimetric leaf gap (DLG) showed a greater incidence of both poor-performing (p = 0.048) and failing phantom audits (p = 0.014); and in general, DLG value was correlated with dose calculation accuracy (r = 0.397, p < 0.001). Manipulating TPS parameters induced systematic changes in planned dose distributions which were consistent with prior observations of how failures manifest. Dose change estimations based on these dose calculations agreed well with true dosimetric errors identified. CONCLUSION: Atypical TPS beam modeling parameters are associated with failing phantom audits. This is identified as an important factor contributing to the observed failing phantom results, and highlights the need for accurate beam modeling.


Subject(s)
Radiotherapy, Intensity-Modulated , Humans , Phantoms, Imaging , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies
17.
J Appl Clin Med Phys ; 22(8): 156-167, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34310827

ABSTRACT

PURPOSE: Re-planning for four-dimensional computed tomography (4DCT)-based lung adaptive radiotherapy commonly requires deformable dose mapping between the planning average-intensity image (AVG) and the newly acquired AVG. However, such AVG-AVG deformable image registration (DIR) lacks accuracy assessment. The current work quantified and compared geometric accuracies of AVG-AVG DIR and corresponding phase-phase DIRs, and subsequently investigated the clinical impact of such AVG-AVG DIR on deformable dose mapping. METHODS AND MATERIALS: Hybrid intensity-based AVG-AVG and phase-phase DIRs were performed between the planning and mid-treatment 4DCTs of 28 non-small cell lung cancer patients. An automated landmark identification algorithm detected vessel bifurcation pairs in both lungs. Target registration error (TRE) of these landmark pairs was calculated for both DIR types. The correlation between TRE and respiratory-induced landmark motion in the planning 4DCT was analyzed. Global and local dose metrics were used to assess the clinical implications of AVG-AVG deformable dose mapping with both DIR types. RESULTS: TRE of AVG-AVG and phase-phase DIRs averaged 3.2 ± 1.0 and 2.6 ± 0.8 mm respectively (p < 0.001). Using AVG-AVG DIR, TREs for landmarks with <10 mm motion averaged 2.9 ± 2.0 mm, compared to 3.1 ± 1.9 mm for the remaining landmarks (p < 0.01). Comparatively, no significant difference was demonstrated for phase-phase DIRs. Dosimetrically, no significant difference in global dose metrics was observed between doses mapped with AVG-AVG DIR and the phase-phase DIR, but a positive linear relationship existed (p = 0.04) between the TRE of AVG-AVG DIR and local dose difference. CONCLUSIONS: When the region of interest experiences <10 mm respiratory-induced motion, AVG-AVG DIR may provide sufficient geometric accuracy; conversely, extra attention is warranted, and phase-phase DIR is recommended. Dosimetrically, the differences in geometric accuracy between AVG-AVG and phase-phase DIRs did not impact global lung-based metrics. However, as more localized dose metrics are needed for toxicity assessment, phase-phase DIR may be required as its lower mean TRE improved voxel-based dosimetry.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Algorithms , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Four-Dimensional Computed Tomography , Humans , Image Processing, Computer-Assisted , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted
18.
Adv Radiat Oncol ; 6(4): 100683, 2021.
Article in English | MEDLINE | ID: mdl-33824935

ABSTRACT

PURPOSE: To provide a series of suggestions for other Medical Physics practices to follow in order to provide effective radiation therapy treatments during the COVID-19 pandemic. METHODS AND MATERIALS: We reviewed our entire Radiation Oncology infrastructure to identify a series of workflows and policy changes that we implemented during the pandemic that yielded more effective practices during this time. RESULTS: We identified a structured list of several suggestions that can help other Medical Physics practices overcome the challenges involved in delivering high quality radiotherapy services during this pandemic. CONCLUSIONS: Our facility encompasses 4 smaller Houston Area Locations (HALs), a main campus with 8 distinct services based on treatment site (ie. Thoracic, Head and Neck, Breast, Gastrointestinal, Gynecology, Genitourinary, Hematologic Malignancies, Melanoma and Sarcoma and Central Nervous System/Pediatrics), a Proton Center facility, an MR-Linac, a Gamma Knife clinic and an array of brachytherapy services. Due to the scope of our services, we have gained experience in dealing with the rapidly changing pandemic effects on our clinical practice. Our paper provides a resource to other Medical Physics practices in search of workflows that have been resilient during these challenging times.

20.
Med Phys ; 47(10): 5250-5259, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32677052

ABSTRACT

PURPOSE: Treatment planning system (TPS) dose calculations have previously been shown to be sensitive to modeling errors, especially when treating with complex strategies like intensity-modulated radiation therapy (IMRT). This work investigates the dosimetric impact of several dosimetric and nondosimetric beam modeling parameters, based on their distribution in the radiotherapy community, in two commercial TPSs in order to understand the realistic potential for dose deviations and their clinical effects. METHODS AND MATERIALS: Beam models representing standard 120-leaf Varian Clinac-type machines were developed in Eclipse 13.5 (AAA algorithm) and RayStation 9A (v8.99, collapsed-cone algorithm) based upon median values of dosimetric measurements from Imaging and Radiation Oncology Core (IROC) Houston site visit data and community beam modeling parameter survey data in order to represent a baseline linear accelerator. Five clinically acceptable treatment plans (three IMRT, two VMAT) were developed for the IROC head and neck phantom. Dose distributions for each plan were recalculated after individually modifying parameters of interest (e.g., MLC transmission, percent depth doses [PDDs], and output factors) according to the 2.5th to 97.5th percentiles of community survey and machine performance data to encompass the realistic extent of variance in the radiotherapy community. The resultant dose distributions were evaluated by examining relative changes in average dose for thermoluminescent dosimeter (TLD) locations across the two target volumes and organ at risk (OAR). Interplay was also examined for parameters generating changes in target dose greater than 1%. RESULTS: For Eclipse, dose calculations were sensitive to changes in the dosimetric leaf gap (DLG), which resulted in differences from -5% to +3% to the targets relative to the baseline beam model. Modifying the MLC transmission factor introduced differences up to ± 1%. For RayStation, parameters determining MLC behaviors likewise contributed substantially; the MLC offset introduced changes in dose from -4% to +7%, and the MLC transmission caused changes of -4% to +2%. Among the dosimetric qualities examined, changes in PDD implementation resulted in the most substantial changes, but these were only up to ±1%. Other dosimetric factors had <1% impact on dose accuracy. Interplay between impactful parameters was found to be minimal. CONCLUSION: Factors related to the modeling of the MLC, particularly relating to the leaf offset, can cause clinically significant changes in the calculated dose for IMRT and VMAT plans. This should be of concern to the radiotherapy community because the clinical effects of poor TPS commissioning were based on reported data from clinically implemented beam models. These results further reinforce that dose errors caused by poor TPS calculations are often involved in IROC phantom failures.


Subject(s)
Radiation Oncology , Radiotherapy, Intensity-Modulated , Phantoms, Imaging , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...