Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
2.
ACS Infect Dis ; 9(8): 1470-1487, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37417544

ABSTRACT

Leishmaniasis is a collection of diseases caused by more than 20 Leishmania parasite species that manifest as either visceral, cutaneous, or mucocutaneous leishmaniasis. Despite the significant mortality and morbidity associated with leishmaniasis, it remains a neglected tropical disease. Existing treatments have variable efficacy, significant toxicity, rising resistance, and limited oral bioavailability, which necessitates the development of novel and affordable therapeutics. Here, we report on the continued optimization of a series of imidazopyridines for visceral leishmaniasis and a scaffold hop to a series of substituted 2-(pyridin-2-yl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazoles with improved absorption, distribution, metabolism, and elimination properties.


Subject(s)
Leishmania , Leishmaniasis, Visceral , Leishmaniasis , Humans , Leishmaniasis, Visceral/drug therapy , Neglected Diseases , Imidazoles/pharmacology
3.
Front Microbiol ; 14: 1149145, 2023.
Article in English | MEDLINE | ID: mdl-37234530

ABSTRACT

Acanthamoeba species, Naegleria fowleri, and Balamuthia mandrillaris are opportunistic pathogens that cause a range of brain, skin, eye, and disseminated diseases in humans and animals. These pathogenic free-living amoebae (pFLA) are commonly misdiagnosed and have sub-optimal treatment regimens which contribute to the extremely high mortality rates (>90%) when they infect the central nervous system. To address the unmet medical need for effective therapeutics, we screened kinase inhibitor chemotypes against three pFLA using phenotypic drug assays involving CellTiter-Glo 2.0. Herein, we report the activity of the compounds against the trophozoite stage of each of the three amoebae, ranging from nanomolar to low micromolar potency. The most potent compounds that were identified from this screening effort were: 2d (A. castellanii EC50: 0.92 ± 0.3 µM; and N. fowleri EC50: 0.43 ± 0.13 µM), 1c and 2b (N. fowleri EC50s: <0.63 µM, and 0.3 ± 0.21 µM), and 4b and 7b (B. mandrillaris EC50s: 1.0 ± 0.12 µM, and 1.4 ± 0.17 µM, respectively). With several of these pharmacophores already possessing blood-brain barrier (BBB) permeability properties, or are predicted to penetrate the BBB, these hits present novel starting points for optimization as future treatments for pFLA-caused diseases.

4.
Bioconjug Chem ; 34(6): 988-993, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37216465

ABSTRACT

Macrocycles occupy chemical space "beyond the rule of five". They bridge traditional bioactive small molecule drugs and macromolecules and have the potential to modulate challenging targets such as PPI or proteases. Here we report an on-DNA macrocyclization reaction utilizing intramolecular benzimidazole formation. A 129-million-member macrocyclic library composed of a privileged benzimidazole core, a dipeptide sequence (natural or non-natural), and linkers of varying length and flexibility was designed and synthesized.


Subject(s)
Macrocyclic Compounds , Macrocyclic Compounds/chemistry , Gene Library , Cyclization , Benzimidazoles , DNA/chemistry
5.
J Med Chem ; 66(3): 1972-1989, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36695630

ABSTRACT

The carbazole CBL0137 (1) is a lead for drug development against human African trypanosomiasis (HAT), a disease caused by Trypanosoma brucei. To advance 1 as a candidate drug, we synthesized new analogs that were evaluated for the physicochemical properties, antitrypanosome potency, selectivity against human cells, metabolism in microsomes or hepatocytes, and efflux ratios. Structure-activity/property analyses of analogs revealed eight new compounds with higher or equivalent selectivity indices (5j, 5t, 5v, 5w, 5y, 8d, 13i, and 22e). Based on the overall compound profiles, compounds 5v and 5w were selected for assessment in a mouse model of HAT; while 5v demonstrated a lead-like profile for HAT drug development, 5w showed a lack of efficacy. Lessons from these studies will inform further optimization of carbazoles for HAT and other indications.


Subject(s)
Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Mice , Animals , Humans , Trypanosomiasis, African/drug therapy , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/chemistry , Carbazoles/pharmacology , Carbazoles/therapeutic use , Drug Discovery
6.
Mol Pharmacol ; 102(1): 1-16, 2022 07.
Article in English | MEDLINE | ID: mdl-35605992

ABSTRACT

CBL0137 is a lead drug for human African trypanosomiasis, caused by Trypanosoma brucei Herein, we use a four-step strategy to 1) identify physiologic targets and 2) determine modes of molecular action of CBL0137 in the trypanosome. First, we identified fourteen CBL0137-binding proteins using affinity chromatography. Second, we developed hypotheses of molecular modes of action, using predicted functions of CBL0137-binding proteins as guides. Third, we documented effects of CBL0137 on molecular pathways in the trypanosome. Fourth, we identified physiologic targets of the drug by knocking down genes encoding CBL0137-binding proteins and comparing their molecular effects to those obtained when trypanosomes were treated with CBL0137. CBL0137-binding proteins included glycolysis enzymes (aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, phosphoglycerate kinase) and DNA-binding proteins [universal minicircle sequence binding protein 2, replication protein A1 (RPA1), replication protein A2 (RPA2)]. In chemical biology studies, CBL0137 did not reduce ATP level in the trypanosome, ruling out glycolysis enzymes as crucial targets for the drug. Thus, many CBL0137-binding proteins are not physiologic targets of the drug. CBL0137 inhibited 1) nucleus mitosis, 2) nuclear DNA replication, and 3) polypeptide synthesis as the first carbazole inhibitor of eukaryote translation. RNA interference (RNAi) against RPA1 inhibited both DNA synthesis and mitosis, whereas RPA2 knockdown inhibited mitosis, consistent with both proteins being physiologic targets of CBL0137. Principles used here to distinguish drug-binding proteins from physiologic targets of CBL0137 can be deployed with different drugs in other biologic systems. SIGNIFICANCE STATEMENT: To distinguish drug-binding proteins from physiologic targets in the African trypanosome, we devised and executed a multidisciplinary approach involving biochemical, genetic, cell, and chemical biology experiments. The strategy we employed can be used for drugs in other biological systems.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Carbazoles/pharmacology , Drug Development
7.
Bioconjug Chem ; 32(9): 1973-1978, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34424686

ABSTRACT

Enzymatic catalysis is a highly attractive approach to the DNA encoded library technology (DEL) that has not been widely explored. In this paper, we report an l-threonine aldolase (l-TA)-catalyzed on-DNA aldol reaction to form ß-hydroxy-α-amino acids, and its diastereoselectivity determination. l-TAs from three species show good on-DNA aldehyde scope and complementary stereoselectivity. The formed aldol product can be further diversified via various reactions, which demonstrates the utility of this reaction in DEL.


Subject(s)
Glycine Hydroxymethyltransferase , Aldehydes , Catalysis , Substrate Specificity
8.
J Med Chem ; 64(13): 9404-9430, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34156862

ABSTRACT

Neglected tropical diseases such as human African trypanosomiasis (HAT) are prevalent primarily in tropical climates and among populations living in poverty. Historically, the lack of economic incentive to develop new treatments for these diseases has meant that existing therapeutics have serious shortcomings in terms of safety, efficacy, and administration, and better therapeutics are needed. We now report a series of 3,5-disubstituted-7-azaindoles identified as growth inhibitors of Trypanosoma brucei, the parasite that causes HAT, through a high-throughput screen. We describe the hit-to-lead optimization of this series and the development and preclinical investigation of 29d, a potent antitrypanosomal compound with promising pharmacokinetic (PK) parameters. This compound was ultimately not progressed beyond in vivo PK studies due to its inability to penetrate the blood-brain barrier (BBB), critical for stage 2 HAT treatments.


Subject(s)
Indoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
9.
J Med Chem ; 63(17): 9912-9927, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32786222

ABSTRACT

Human African trypanosomiasis (HAT), or sleeping sickness, is caused by the protozoan parasite Trypanosoma brucei and transmitted through the bite of infected tsetse flies. The disease is considered fatal if left untreated. To identify new chemotypes against Trypanosoma brucei, previously we identified 797 potent kinase-targeting inhibitors grouped into 59 clusters plus 53 singleton compounds with at least 100-fold selectivity over HepG2 cells. From this set of hits, a cluster of diaminopurine-derived compounds was identified. Herein, we report our medicinal chemistry investigation involving the exploration of structure-activity and structure-property relationships around one of the high-throughput screening (HTS) hits, N2-(thiophen-3-yl)-N6-(2,2,2-trifluoroethyl)-9H-purine-2,6-diamine (1, NEU-1106). This work led to the identification of a potent lead compound (4aa, NEU-4854) with improved in vitro absorption, distribution, metabolism, and excretion (ADME) properties, which was progressed into proof-of-concept translation of in vitro antiparasitic activity to in vivo efficacy.


Subject(s)
Purines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , Hep G2 Cells , Humans , Mice , Microsomes, Liver/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Proof of Concept Study , Purines/chemical synthesis , Purines/metabolism , Purines/pharmacokinetics , Rats , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/metabolism , Trypanocidal Agents/pharmacokinetics
10.
ACS Med Chem Lett ; 11(3): 249-257, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32184953

ABSTRACT

Utilizing a target repurposing and parasite-hopping approach, we tested a previously reported library of compounds that were active against Trypanosoma brucei, plus 31 new compounds, against a variety of protozoan parasites including Trypanosoma cruzi, Leishmania major, Leishmania donovani, and Plasmodium falciparum. This led to the discovery of several compounds with submicromolar activities and improved physicochemical properties that are early leads toward the development of chemotherapeutic agents against kinetoplastid diseases and malaria.

11.
ACS Med Chem Lett ; 11(3): 258-265, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32184954

ABSTRACT

We recently reported a series of compounds for a solubility-driven optimization campaign of antitrypanosomal compounds. Extending a parasite-hopping approach to the series, a subset of compounds from this library has been cross-screened for activity against the metazoan flatworm parasite, Schistosoma mansoni. This study reports the identification and preliminary development of several potently bioactive compounds against adult schistosomes, one or more of which represent promising leads for further assessment and optimization.

12.
RSC Med Chem ; 11(8): 950-959, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-33479690

ABSTRACT

Human African trypanosomiasis is a neglected tropical disease (NTD) that is fatal if left untreated. Although approximately 13 million people live in moderate- to high-risk areas for infection, current treatments are plagued by problems with safety, efficacy, and emerging resistance. In an effort to fill the drug development pipeline for HAT, we have expanded previous work exploring the chemotype represented by the compound NEU-1090, with a particular focus on improvement of absorption, distribution, metabolism and elimination (ADME) properties. These efforts resulted in several compounds with substantially improved aqueous solubility, although these modifications typically resulted in a loss of trypanosomal activity. We herein report the results of our investigation into the antiparasitic activity, toxicity, and ADME properties of this class of compounds in the interest of informing the NTD drug discovery community and avoiding duplication of effort.

13.
J Med Chem ; 63(5): 2527-2546, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31670951

ABSTRACT

Human African trypanosomiasis (HAT) is a neglected tropical disease caused by infection with either of two subspecies of the parasite Trypanosoma brucei. Due to a lack of economic incentive to develop new drugs, current treatments have severe limitations in terms of safety, efficacy, and ease of administration. In an effort to develop new HAT therapeutics, we report the structure-activity relationships around T. brucei for a series of benzoxazepinoindazoles previously identified through a high-throughput screen of human kinase inhibitors, and the subsequent in vivo experiments for HAT. We identified compound 18, which showed an improved kinase selectivity profile and acceptable pharmacokinetic parameters, as a promising lead. Although treatment with 18 cured 60% of mice in a systemic model of HAT, the compound was unable to clear parasitemia in a CNS model of the disease. We also report the results of cross-screening these compounds against T. cruzi, L. donovani, and S. mansoni.


Subject(s)
Indazoles/chemistry , Indazoles/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Animals , Female , Humans , Indazoles/pharmacokinetics , Mice , Oxazepines/chemistry , Oxazepines/pharmacokinetics , Oxazepines/pharmacology , Parasitic Sensitivity Tests , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Trypanocidal Agents/pharmacokinetics
14.
J Med Chem ; 63(2): 756-783, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31846577

ABSTRACT

From a high-throughput screen of 42 444 known human kinases inhibitors, a pyrazolo[1,5-b]pyridazine scaffold was identified to begin optimization for the treatment of human African trypanosomiasis. Previously reported data for analogous compounds against human kinases GSK-3ß, CDK-2, and CDK-4 were leveraged to try to improve the selectivity of the series, resulting in 23a which showed selectivity for T. b. brucei over these three human enzymes. In parallel, properties known to influence the absorption, distribution, metabolism, and excretion (ADME) profile of the series were optimized resulting in 20g being progressed into an efficacy study in mice. Though 20g showed toxicity in mice, it also demonstrated CNS penetration in a PK study and significant reduction of parasitemia in four out of the six mice.


Subject(s)
Pyridazines/chemical synthesis , Pyridazines/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosomiasis, African/drug therapy , Animals , Cell Survival/drug effects , Crystallography, X-Ray , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Drug Repositioning , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Hepatocytes/drug effects , Hepatocytes/metabolism , High-Throughput Screening Assays , Humans , Leishmania donovani/drug effects , Mice , Models, Molecular , Pyridazines/pharmacokinetics , Rats , Structure-Activity Relationship , Substrate Specificity , Tissue Distribution , Trypanocidal Agents/pharmacokinetics , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/parasitology
15.
PLoS Negl Trop Dis ; 13(2): e0007129, 2019 02.
Article in English | MEDLINE | ID: mdl-30735501

ABSTRACT

New treatments are needed for neglected tropical diseases (NTDs) such as Human African trypanosomiasis (HAT), Chagas disease, and schistosomiasis. Through a whole organism high-throughput screening campaign, we previously identified 797 human kinase inhibitors that grouped into 59 structural clusters and showed activity against T. brucei, the causative agent of HAT. We herein report the results of further investigation of one of these clusters consisting of substituted isatin derivatives, focusing on establishing structure-activity and -property relationship scope. We also describe their in vitro absorption, distribution, metabolism, and excretion (ADME) properties. For one isatin, NEU-4391, which offered the best activity-property profile, pharmacokinetic parameters were measured in mice.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosomiasis, African/drug therapy , Animals , Female , Mice , Molecular Structure , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacokinetics
16.
J Med Chem ; 62(2): 665-687, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30565932

ABSTRACT

Lapatinib, an approved epidermal growth factor receptor inhibitor, was explored as a starting point for the synthesis of new hits against Trypanosoma brucei, the causative agent of human African trypanosomiasis (HAT). Previous work culminated in 1 (NEU-1953), which was part of a series typically associated with poor aqueous solubility. In this report, we present various medicinal chemistry strategies that were used to increase the aqueous solubility and improve the physicochemical profile without sacrificing antitrypanosomal potency. To rank trypanocidal hits, a new assay (summarized in a cytocidal effective concentration (CEC50)) was established, as part of the lead selection process. Increasing the sp3 carbon content of 1 resulted in 10e (0.19 µM EC50 against T. brucei and 990 µM aqueous solubility). Further chemical exploration of 10e yielded 22a, a trypanocidal quinolinimine (EC50: 0.013 µM; aqueous solubility: 880 µM; and CEC50: 0.18 µM). Compound 22a reduced parasitemia 109 fold in trypanosome-infected mice; it is an advanced lead for HAT drug development.


Subject(s)
Lapatinib/analogs & derivatives , Quinazolines/chemistry , Trypanocidal Agents/chemistry , Animals , Blood Proteins/chemistry , Blood Proteins/metabolism , Disease Models, Animal , Drug Design , Drug Evaluation, Preclinical , Half-Life , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Lapatinib/therapeutic use , Mice , Microsomes, Liver , Quinazolines/pharmacology , Quinazolines/therapeutic use , Rats , Solubility , Structure-Activity Relationship , Thermodynamics , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Water/chemistry
17.
PLoS Negl Trop Dis ; 12(11): e0006834, 2018 11.
Article in English | MEDLINE | ID: mdl-30475800

ABSTRACT

We recently reported the medicinal chemistry re-optimization of a series of compounds derived from the human tyrosine kinase inhibitor, lapatinib, for activity against Plasmodium falciparum. From this same library of compounds, we now report potent compounds against Trypanosoma brucei brucei (which causes human African trypanosomiasis), T. cruzi (the pathogen that causes Chagas disease), and Leishmania spp. (which cause leishmaniasis). In addition, sub-micromolar compounds were identified that inhibit proliferation of the parasites that cause African animal trypanosomiasis, T. congolense and T. vivax. We have found that this set of compounds display acceptable physicochemical properties and represent progress towards identification of lead compounds to combat several neglected tropical diseases.


Subject(s)
Antiprotozoal Agents/pharmacology , Cell Proliferation/drug effects , Leishmania/drug effects , Thiazoles/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects , Animals , Antiprotozoal Agents/chemistry , Chagas Disease/parasitology , Female , Humans , Leishmania/physiology , Leishmaniasis/parasitology , Mice , Thiazoles/chemistry , Trypanosoma brucei brucei/physiology , Trypanosoma cruzi/physiology , Trypanosomiasis, African/parasitology
18.
ACS Med Chem Lett ; 9(10): 996-1001, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30344906

ABSTRACT

Discovery of new chemotherapeutic lead agents can be accelerated by optimizing chemotypes proven to be effective in other diseases to act against parasites. One such medicinal chemistry campaign has focused on optimizing the anilinoquinazoline drug lapatinib (1) and the alkynyl thieno[3,2-d]pyrimidine hit GW837016X (NEU-391, 3) into leads for antitrypanosome drugs. We now report the structure-activity relationship studies of 3 and its analogs against Trypanosoma brucei, which causes human African trypanosomiasis (HAT). The series was also tested against Trypanosoma cruzi, Leishmania major, and Plasmodium falciparum. In each case, potent antiparasitic hits with acceptable toxicity margins over mammalian HepG2 and NIH3T3 cell lines were identified. In a mouse model of HAT, 3 extended life of treated mice by 50%, compared to untreated controls. At the cellular level, 3 inhibited mitosis and cytokinesis in T. brucei. Thus, the alkynylthieno[3,2-d]pyrimidine chemotype is an advanced hit worthy of further optimization as a potential chemotherapeutic agent for HAT.

20.
mBio ; 9(1)2018 02 27.
Article in English | MEDLINE | ID: mdl-29487234

ABSTRACT

The human malaria parasite Plasmodium falciparum requires efficient egress out of an infected red blood cell for pathogenesis. This egress event is highly coordinated and is mediated by several signaling proteins, including the plant-like Pfalciparum calcium-dependent protein kinase 5 (PfCDPK5). Knockdown of PfCDPK5 results in an egress block where parasites are trapped inside their host cells. The mechanism of this PfCDPK5-dependent block, however, remains unknown. Here, we show that PfCDPK5 colocalizes with a specialized set of parasite organelles known as micronemes and is required for their discharge, implicating failure of this step as the cause of the egress defect in PfCDPK5-deficient parasites. Furthermore, we show that PfCDPK5 cooperates with the Pfalciparum cGMP-dependent kinase (PfPKG) to fully activate the protease cascade critical for parasite egress. The PfCDPK5-dependent arrest can be overcome by hyperactivation of PfPKG or by physical disruption of the arrested parasite, and we show that both treatments facilitate the release of the micronemes required for egress. Our results define the molecular mechanism of PfCDPK5 function and elucidate the complex signaling pathway of parasite egress.IMPORTANCE The signs and symptoms of clinical malaria result from the replication of parasites in human blood. Efficient egress of the malaria parasite Plasmodium falciparum out of an infected red blood cell is critical for pathogenesis. The Pfalciparum calcium-dependent protein kinase 5 (PfCDPK5) is essential for parasite egress. Following PfCDPK5 knockdown, parasites remain trapped inside their host cell and do not egress, but the mechanism for this block remains unknown. We show that PfCDPK5 colocalizes with parasite organelles known as micronemes. We demonstrate that PfCDPK5 is critical for the discharge of these micronemes and that failure of this step is the molecular mechanism of the parasite egress arrest. We also show that hyperactivation of the cGMP-dependent kinase PKG can overcome this arrest. Our data suggest that small molecules that inhibit the egress signaling pathway could be effective antimalarial therapeutics.


Subject(s)
Calcium-Binding Proteins/metabolism , Erythrocytes/parasitology , Organelle Biogenesis , Plasmodium falciparum/enzymology , Plasmodium falciparum/physiology , Protein Kinases/metabolism , Protozoan Proteins/metabolism , Calcium-Binding Proteins/genetics , Gene Knockdown Techniques , Host-Parasite Interactions , Plasmodium falciparum/genetics , Protein Kinases/genetics , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...