Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 37(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30131424

ABSTRACT

Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like receptors (TLRs) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN-I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN-I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN-I downstream of the TLR9-to-MyD88-to-IRF7 signaling pathway without requiring IFN-I positive feedback, high IRF7 expression, or AP3-driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN-I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.


Subject(s)
Dendritic Cells/immunology , Herpesviridae Infections/immunology , Interferon Type I/immunology , Muromegalovirus/immunology , Signal Transduction/immunology , Adaptor Protein Complex 3/genetics , Adaptor Protein Complex 3/immunology , Animals , Dendritic Cells/pathology , Endosomes/genetics , Endosomes/immunology , Herpesviridae Infections/genetics , Herpesviridae Infections/pathology , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , Interferon Type I/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Signal Transduction/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/immunology , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/immunology
2.
J Biol Chem ; 293(18): 6637-6646, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29535188

ABSTRACT

Dystrophin, encoded by the DMD gene, is critical for maintaining plasma membrane integrity during muscle contraction events. Mutations in the DMD gene disrupting the reading frame prevent dystrophin production and result in severe Duchenne muscular dystrophy (DMD); in-frame internal deletions allow production of partly functional internally deleted dystrophin and result in less severe Becker muscular dystrophy (BMD). Many known BMD deletions occur in dystrophin's central domain, generally considered to be a monotonous rod-shaped domain based on the knowledge of spectrin family proteins. However, the effects caused by these deletions, ranging from asymptomatic to severe BMD, argue against the central domain serving only as a featureless scaffold. We undertook structural studies combining small-angle X-ray scattering and molecular modeling in an effort to uncover the structure of the central domain, as dystrophin has been refractory to characterization. We show that this domain appears to be a tortuous and complex filament that is profoundly disorganized by the most severe BMD deletion (loss of exons 45-47). Despite the preservation of large parts of the binding site for neuronal nitric oxide synthase (nNOS) in this deletion, computational approaches failed to recreate the association of dystrophin with nNOS. This observation is in agreement with a strong decrease of nNOS immunolocalization in muscle biopsies, a parameter related to the severity of BMD phenotypes. The structural description of the whole dystrophin central domain we present here is a first necessary step to improve the design of microdystrophin constructs toward the goal of a successful gene therapy for DMD.


Subject(s)
Dystrophin/chemistry , Dystrophin/genetics , Gene Deletion , Muscular Dystrophy, Duchenne/genetics , Binding Sites , Exons , Humans , Molecular Docking Simulation , Muscular Dystrophy, Duchenne/enzymology , Nitric Oxide Synthase Type I/metabolism , Protein Domains , Reading Frames , Scattering, Small Angle , Solutions , X-Ray Diffraction
3.
Elife ; 72018 02 28.
Article in English | MEDLINE | ID: mdl-29488879

ABSTRACT

Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 3 Subunit/metabolism , Cytomegalovirus Infections/immunology , DNA-Binding Proteins/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Th1 Cells/immunology , Transcription Factors/metabolism , Adult , Animals , Cells, Cultured , Female , Gene Expression Regulation , Humans , Male , Mice , Middle Aged
4.
Immunity ; 42(4): 627-39, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25862089

ABSTRACT

Migratory non-lymphoid tissue dendritic cells (NLT-DCs) transport antigens to lymph nodes (LNs) and are required for protective immune responses in the context of inflammation and to promote tolerance to self-antigens in steady-state. However, the molecular mechanisms that elicit steady-state NLT-DC maturation and migration are unknown. By comparing the transcriptome of NLT-DCs in the skin with their migratory counterparts in draining LNs, we have identified a novel NF-κB-regulated gene network specific to migratory DCs. We show that targeted deletion of IKKß in DCs, a major activator of NF-κB, prevents NLT-DC accumulation in LNs and compromises regulatory T cell conversion in vivo. This was associated with impaired tolerance and autoimmunity. NF-κB is generally considered the prototypical pro-inflammatory transcription factor, but this study describes a role for NF-κB signaling in DCs for immune homeostasis and tolerance that could have implications in autoimmune diseases and immunity.


Subject(s)
Dendritic Cells/immunology , Gene Regulatory Networks/immunology , Homeostasis/immunology , Immune Tolerance , NF-kappa B/immunology , Signal Transduction/immunology , Animals , Autoantigens/genetics , Autoantigens/immunology , Autoimmunity , Cell Movement , Dendritic Cells/cytology , Gene Expression Profiling , Gene Expression Regulation , I-kappa B Kinase/deficiency , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Knockout , Microarray Analysis , NF-kappa B/genetics , Skin/cytology , Skin/immunology , Spleen/cytology , Spleen/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology
5.
Front Immunol ; 5: 526, 2014.
Article in English | MEDLINE | ID: mdl-25400632

ABSTRACT

Type I interferons (IFN-I) were identified over 50 years ago as cytokines critical for host defense against viral infections. IFN-I promote anti-viral defense through two main mechanisms. First, IFN-I directly reinforce or induce de novo in potentially all cells the expression of effector molecules of intrinsic anti-viral immunity. Second, IFN-I orchestrate innate and adaptive anti-viral immunity. However, IFN-I responses can be deleterious for the host in a number of circumstances, including secondary bacterial or fungal infections, several autoimmune diseases, and, paradoxically, certain chronic viral infections. We will review the proposed nature of protective versus deleterious IFN-I responses in selected diseases. Emphasis will be put on the potentially deleterious functions of IFN-I in human immunodeficiency virus type 1 (HIV-1) infection, and on the respective roles of IFN-I and IFN-III in promoting resolution of hepatitis C virus (HCV) infection. We will then discuss how the balance between beneficial versus deleterious IFN-I responses is modulated by several key parameters including (i) the subtypes and dose of IFN-I produced, (ii) the cell types affected by IFN-I, and (iii) the source and timing of IFN-I production. Finally, we will speculate how integration of this knowledge combined with advanced biochemical manipulation of the activity of the cytokines should allow designing innovative immunotherapeutic treatments in patients. Specifically, we will discuss how induction or blockade of specific IFN-I responses in targeted cell types could promote the beneficial functions of IFN-I and/or dampen their deleterious effects, in a manner adapted to each disease.

6.
Immunity ; 39(5): 925-38, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24184057

ABSTRACT

In the skin, the lack of markers permitting the unambiguous identification of macrophages and of conventional and monocyte-derived dendritic cells (DCs) complicates understanding of their contribution to skin integrity and to immune responses. By combining CD64 and CCR2 staining, we successfully identified each of these cell types and studied their origin, transcriptomic signatures, and migratory and T cell stimulatory properties. We also analyzed the impact of microbiota on their development and their contribution to skin inflammation during contact hypersensitivity. Dermal macrophages had a unique scavenging role and were unable to migrate and activate T cells. Conventional dermal DCs excelled both at migrating and activating T cells. In the steady-state dermis, monocyte-derived DCs are continuously generated by extravasated Ly-6C(hi) monocytes. Their T cell stimulatory capacity combined with their poor migratory ability made them particularly suited to activate skin-tropic T cells. Therefore, a high degree of functional specialization occurs among the mononuclear phagocytes of the skin.


Subject(s)
Dendritic Cells/cytology , Macrophages/cytology , Skin/cytology , Animals , Antigens, Differentiation/analysis , CD11b Antigen/analysis , Cell Lineage , Chemotaxis, Leukocyte , Chromatography, Gel , Dendritic Cells/immunology , Dermatitis, Contact/immunology , Dermatitis, Contact/pathology , Dermis/cytology , Gene Expression Regulation, Developmental , Immunophenotyping/methods , Langerhans Cells/cytology , Langerhans Cells/immunology , Lymphocyte Cooperation , Macrophages/physiology , Mice , Microbiota/immunology , Monocytes/cytology , Principal Component Analysis , Radiation Chimera , Receptors, CCR2/analysis , Receptors, IgG/analysis , Skin/immunology , Skin/microbiology , Specific Pathogen-Free Organisms , Staining and Labeling/methods , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...