Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Vet Sci ; 8(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34941828

ABSTRACT

First-line treatments of cancer do not always work, and even when they do, they cure the disease at unequal rates mostly owing to biological and clinical heterogeneity across patients. Accurate prediction of clinical outcome and survival following the treatment can support and expedite the process of comparing alternative treatments. We describe the methodology to dynamically determine remission probabilities for individual patients, as well as their prospects of progression-free survival (PFS). The proposed methodology utilizes the ex vivo drug sensitivity of cancer cells, their immunophenotyping results, and patient information, such as age and breed, in training machine learning (ML) models, as well as the Cox hazards model to predict the probability of clinical remission (CR) or relapse across time for a given patient. We applied the methodology using the three types of data obtained from 242 canine lymphoma patients treated by (L)-CHOP chemotherapy. The results demonstrate substantial enhancement in the predictive accuracy of the ML models by utilizing features from all the three types of data. They also highlight superior performance and utility in predicting survival compared to the conventional stratification method. We believe that the proposed methodology can contribute to improving and personalizing the care of cancer patients.

2.
Vet Comp Oncol ; 19(1): 160-171, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33025640

ABSTRACT

We report a precision medicine platform that evaluates the probability of chemotherapy drug efficacy for canine lymphoma by combining ex vivo chemosensitivity and immunophenotyping assays with computational modelling. We isolated live cancer cells from fresh fine needle aspirates of affected lymph nodes and collected post-treatment clinical responses in 261 canine lymphoma patients scheduled to receive at least 1 of 5 common chemotherapy agents (doxorubicin, vincristine, cyclophosphamide, lomustine and rabacfosadine). We used flow cytometry analysis for immunophenotyping and ex vivo chemosensitivity testing. For each drug, 70% of treated patients were randomly selected to train a random forest model to predict the probability of positive Veterinary Cooperative Oncology Group (VCOG) clinical response based on input variables including antigen expression profiles and treatment sensitivity readouts for each patient's cancer cells. The remaining 30% of patients were used to test model performance. Most models showed a test set ROC-AUC > 0.65, and all models had overall ROC-AUC > 0.95. Predicted response scores significantly distinguished (P < .001) positive responses from negative responses in B-cell and T-cell disease and newly diagnosed and relapsed patients. Patient groups with predicted response scores >50% showed a statistically significant reduction (log-rank P < .05) in time to complete response when compared to the groups with scores <50%. The computational models developed in this study enabled the conversion of ex vivo cell-based chemosensitivity assay results into a predicted probability of in vivo therapeutic efficacy, which may help improve treatment outcomes of individual canine lymphoma patients by providing predictive estimates of positive treatment response.


Subject(s)
Antineoplastic Agents/therapeutic use , Dog Diseases/drug therapy , Drug Resistance, Neoplasm , Immunophenotyping/veterinary , Lymphoma/veterinary , Animals , Dog Diseases/pathology , Dogs , Female , Lymph Nodes/pathology , Lymphoma/drug therapy , Lymphoma/pathology , Machine Learning , Male , Models, Biological , Predictive Value of Tests
3.
Stem Cell Reports ; 10(1): 212-227, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29249663

ABSTRACT

Here, we show that HEMATOLOGICAL AND NEUROLOGICAL EXPRESSED 1-LIKE (HN1L) is a targetable breast cancer stem cell (BCSC) gene that is altered in 25% of whole breast cancer and significantly correlated with shorter overall or relapse-free survival in triple-negative breast cancer (TNBC) patients. HN1L silencing reduced the population of BCSCs, inhibited tumor initiation, resensitized chemoresistant tumors to docetaxel, and hindered cancer progression in multiple TNBC cell line-derived xenografts. Additionally, gene signatures associated with HN1L correlated with shorter disease-free survival of TNBC patients. We defined HN1L as a BCSC transcription regulator for genes involved in the LEPR-STAT3 signaling axis as HN1L binds to a putative consensus upstream sequence of STAT3, LEPTIN RECEPTOR, and MIR-150. Our data reveal that BCSCs in TNBC depend on the transcription regulator HN1L for the sustained activation of the LEPR-STAT3 pathway, which makes it a potentially important target for both prognosis and BCSC therapy.


Subject(s)
Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Leptin/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/metabolism , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, SCID , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/genetics , Neoplastic Stem Cells/pathology , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Receptors, Leptin/genetics , Response Elements , STAT3 Transcription Factor/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
4.
Environ Manage ; 39(3): 291-300, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17203342

ABSTRACT

Visitors' perceptions of impacts and acceptable standards for environmental conditions can provide essential information for the sustainable management of tourist destinations, especially protected areas. To this end, visitor surveys were administered during the peak visitor season in Cape Range National Park, on the northwest coast of Western Australia and adjacent to the iconic Ningaloo Reef. The central focus was visitors' perceptions regarding environmental conditions and standards for potential indicators. Conditions considered of greatest importance in determining visitors' quality of experience included litter, inadequate disposal of human waste, presence of wildlife, levels of noise, and access to beach and ocean. Standards were determined, based on visitors' perceptions, for a range of site-specific and non-site-specific indicators, with standards for facilities (e.g., acceptable number of parking bays, signs) and for negative environmental impacts (e.g., levels of littering, erosion) sought. The proposed standards varied significantly between sites for the facilities indicators; however, there was no significant difference between sites for environmental impacts. For the facilities, the standards proposed by visitors were closely related to the existing situation, suggesting that they were satisfied with the status quo. These results are considered in the context of current research interest in the efficacy of visitor-derived standards as a basis for protected area management.


Subject(s)
Environment , Recreation , Travel , Data Collection , Refuse Disposal , Western Australia
SELECTION OF CITATIONS
SEARCH DETAIL