Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Heredity (Edinb) ; 122(2): 133-149, 2019 02.
Article in English | MEDLINE | ID: mdl-29880893

ABSTRACT

Admixture resulting from natural dispersal processes can potentially generate novel phenotypic variation that may facilitate persistence in changing environments or result in the loss of population-specific adaptations. Yet, under the US Endangered Species Act, policy is limited for management of individuals whose ancestry includes a protected taxon; therefore, they are generally not protected under the Act. This issue is exemplified by the recently re-established grey wolves of the Pacific Northwest states of Washington and Oregon, USA. This population was likely founded by two phenotypically and genetically distinct wolf ecotypes: Northern Rocky Mountain (NRM) forest and coastal rainforest. The latter is considered potentially threatened in southeast Alaska and thus the source of migrants may affect plans for their protection. To assess the genetic source of the re-established population, we sequenced a ~ 300 bp portion of the mitochondrial control region and ~ 5 Mbp of the nuclear genome. Genetic analysis revealed that the Washington wolves share ancestry with both wolf ecotypes, whereas the Oregon population shares ancestry with NRM forest wolves only. Using ecological niche modelling, we found that the Pacific Northwest states contain environments suitable for each ecotype, with wolf packs established in both environmental types. Continued migration from coastal rainforest and NRM forest source populations may increase the genetic diversity of the Pacific Northwest population. However, this admixed population challenges traditional management regimes given that admixture occurs between an adaptively distinct ecotype and a more abundant reintroduced interior form. Our results emphasize the need for a more precise US policy to address the general problem of admixture in the management of endangered species, subspecies, and distinct population segments.


Subject(s)
Endangered Species , Wolves/growth & development , Animal Distribution , Animals , Breeding , Conservation of Natural Resources , Ecosystem , Endangered Species/statistics & numerical data , Female , Genotype , Male , Northwestern United States , Population Dynamics , Wolves/classification , Wolves/genetics , Wolves/physiology
2.
Proc Biol Sci ; 283(1837)2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27581877

ABSTRACT

The extinction vortex is a theoretical model describing the process by which extinction risk is elevated in small, isolated populations owing to interactions between environmental, demographic, and genetic factors. However, empirical demonstrations of these interactions have been elusive. We modelled the dynamics of a small mountain lion population isolated by anthropogenic barriers in greater Los Angeles, California, to evaluate the influence of demographic, genetic, and landscape factors on extinction probability. The population exhibited strong survival and reproduction, and the model predicted stable median population growth and a 15% probability of extinction over 50 years in the absence of inbreeding depression. However, our model also predicted the population will lose 40-57% of its heterozygosity in 50 years. When we reduced demographic parameters proportional to reductions documented in another wild population of mountain lions that experienced inbreeding depression, extinction probability rose to 99.7%. Simulating greater landscape connectivity by increasing immigration to greater than or equal to one migrant per generation appears sufficient to largely maintain genetic diversity and reduce extinction probability. We provide empirical support for the central tenet of the extinction vortex as interactions between genetics and demography greatly increased extinction probability relative to the risk from demographic and environmental stochasticity alone. Our modelling approach realistically integrates demographic and genetic data to provide a comprehensive assessment of factors threatening small populations.


Subject(s)
Genetics, Population , Puma/genetics , Animals , Los Angeles , Population Dynamics , Probability
3.
Mol Ecol ; 25(11): 2443-53, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27106273

ABSTRACT

Hybrid zones typically contain novel gene combinations that can be tested by natural selection in a unique genetic context. Parental haplotypes that increase fitness can introgress beyond the hybrid zone, into the range of parental species. We used the Affymetrix canine SNP genotyping array to identify genomic regions tagged by multiple ancestry informative markers that are more frequent in an admixed population than expected. We surveyed a hybrid zone formed in the last 100 years as coyotes expanded their range into eastern North America. Concomitant with expansion, coyotes hybridized with wolves and some populations became more wolflike, such that coyotes in the northeast have the largest body size of any coyote population. Using a set of 3102 ancestry informative markers, we identified 60 differentially introgressed regions in 44 canines across this admixture zone. These regions are characterized by an excess of exogenous ancestry and, in northeastern coyotes, are enriched for genes affecting body size and skeletal proportions. Further, introgressed wolf-derived alleles have penetrated into Southern US coyote populations. Because no wolves currently exist in this area, these alleles are unlikely to have originated from recent hybridization. Instead, they probably originated from intraspecific gene flow or ancient admixture. We show that grey wolf and coyote admixture has far-reaching effects and, in addition to phenotypically transforming admixed populations, allows for the differential movement of alleles from different parental species to be tested in new genomic backgrounds.


Subject(s)
Coyotes/genetics , Hybridization, Genetic , Wolves/genetics , Alleles , Animals , Chromosome Mapping , Gene Flow , Genetics, Population , Genomics , North America , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
4.
Sci Adv ; 2(7): e1501714, 2016 Jul.
Article in English | MEDLINE | ID: mdl-29713682

ABSTRACT

Protection of populations comprising admixed genomes is a challenge under the Endangered Species Act (ESA), which is regarded as the most powerful species protection legislation ever passed in the United States but lacks specific provisions for hybrids. The eastern wolf is a newly recognized wolf-like species that is highly admixed and inhabits the Great Lakes and eastern United States, a region previously thought to be included in the geographic range of only the gray wolf. The U.S. Fish and Wildlife Service has argued that the presence of the eastern wolf, rather than the gray wolf, in this area is grounds for removing ESA protection (delisting) from the gray wolf across its geographic range. In contrast, the red wolf from the southeastern United States was one of the first species protected under the ESA and was protected despite admixture with coyotes. We use whole-genome sequence data to demonstrate a lack of unique ancestry in eastern and red wolves that would not be expected if they represented long divergent North American lineages. These results suggest that arguments for delisting the gray wolf are not valid. Our findings demonstrate how a strict designation of a species under the ESA that does not consider admixture can threaten the protection of endangered entities. We argue for a more balanced approach that focuses on the ecological context of admixture and allows for evolutionary processes to potentially restore historical patterns of genetic variation.

5.
Evol Appl ; 8(1): 75-92, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25667604

ABSTRACT

Urbanization profoundly impacts animal populations by causing isolation, increased susceptibility to disease, and exposure to toxicants. Genetic effects include reduced effective population size, increased population substructure, and decreased adaptive potential. We investigated the influence that urbanization and a disease epizootic had on the population genetics of bobcats (Lynx rufus) distributed across a highly fragmented urban landscape. We genotyped more than 300 bobcats, sampled from 1996 to 2012, for variation at nine neutral and seven immune gene-linked microsatellite loci. We found that two freeways are significant barriers to gene flow. Further, a 3-year disease epizootic, associated with secondary anticoagulant rodenticide exposure, caused a population bottleneck that led to significant genetic differentiation between pre- and post-disease populations that was greater than that between populations separated by major freeways for >60 years. However, balancing selection acted on immune-linked loci during the epizootic, maintaining variation at functional regions. Conservation assessments need to assay loci that are potentially under selection to better preserve the adaptive potential of populations at the urban-wildland interface. Further, interconnected regions that contain appropriate habitat for wildlife will be critical to the long-term viability of animal populations in urban landscapes.

6.
PLoS Genet ; 10(7): e1004466, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25078401

ABSTRACT

The Tibetan grey wolf (Canis lupus chanco) occupies habitats on the Qinghai-Tibet Plateau, a high altitude (>3000 m) environment where low oxygen tension exerts unique selection pressure on individuals to adapt to hypoxic conditions. To identify genes involved in hypoxia adaptation, we generated complete genome sequences of nine Chinese wolves from high and low altitude populations at an average coverage of 25× coverage. We found that, beginning about 55,000 years ago, the highland Tibetan grey wolf suffered a more substantial population decline than lowland wolves. Positively selected hypoxia-related genes in highland wolves are enriched in the HIF signaling pathway (P = 1.57E-6), ATP binding (P = 5.62E-5), and response to an oxygen-containing compound (P≤5.30E-4). Of these positively selected hypoxia-related genes, three genes (EPAS1, ANGPT1, and RYR2) had at least one specific fixed non-synonymous SNP in highland wolves based on the nine genome data. Our re-sequencing studies on a large panel of individuals showed a frequency difference greater than 58% between highland and lowland wolves for these specific fixed non-synonymous SNPs and a high degree of LD surrounding the three genes, which imply strong selection. Past studies have shown that EPAS1 and ANGPT1 are important in the response to hypoxic stress, and RYR2 is involved in heart function. These three genes also exhibited significant signals of natural selection in high altitude human populations, which suggest similar evolutionary constraints on natural selection in wolves and humans of the Qinghai-Tibet Plateau.


Subject(s)
Adaptation, Physiological/genetics , Hypoxia/genetics , Selection, Genetic/genetics , Wolves/genetics , Acclimatization/genetics , Altitude , Animals , Genetics, Population , Humans , Oxygen Consumption/genetics , Polymorphism, Single Nucleotide , Tibet
7.
Curr Biol ; 24(17): 1989-94, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25131676

ABSTRACT

Large carnivores can be particularly sensitive to the effects of habitat fragmentation on genetic diversity [1, 2]. The Santa Monica Mountains (SMMs), a large natural area within Greater Los Angeles, is completely isolated by urban development and the 101 freeway to the north. Yet the SMMs support a population of mountain lions (Puma concolor), a very rare example of a large carnivore persisting within the boundaries of a megacity. GPS locations of radio-collared lions indicate that freeways are a near-absolute barrier to movement. We genotyped 42 lions using 54 microsatellite loci and found that genetic diversity in SMM lions, prior to 2009, was lower than that for any population in North America except in southern Florida, where inbreeding depression led to reproductive failure [3-5]. We document multiple instances of father-daughter inbreeding and high levels of intraspecific strife, including the unexpected behavior of a male killing two of his offspring and a mate and his son killing two of his brothers. Overall, no individuals from the SMMs have successfully dispersed. Gene flow is critical for this population, and we show that a single male immigrated in 2009, successfully mated, and substantially enhanced genetic diversity. Our results imply that individual behaviors, most likely caused by limited area and reduced opportunities to disperse, may dominate the fate of small, isolated populations of large carnivores. Consequently, comprehensive behavioral monitoring can suggest novel solutions for the persistence of small populations, such as the transfer of individuals across dispersal barriers.


Subject(s)
Aggression , Behavior, Animal/physiology , Environment , Puma/physiology , Animals , California , Female , Gene Flow , Genetic Variation , Inbreeding , Male , Population Dynamics , Puma/genetics , Urban Population
8.
Proc Biol Sci ; 280(1760): 20130423, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23595273

ABSTRACT

Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible.


Subject(s)
Animal Distribution/physiology , Biodiversity , Conservation of Natural Resources/methods , Endangered Species , Genetic Variation , Vertebrates/genetics , Animals , Ecuador , Environment , Models, Biological , Species Specificity
9.
Mamm Genome ; 24(1-2): 80-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23064780

ABSTRACT

The ability to detect recent hybridization between dogs and wolves is important for conservation and legal actions, which often require accurate and rapid resolution of ancestry. The availability of a genetic test for dog-wolf hybrids would greatly support federal and legal enforcement efforts, particularly when the individual in question lacks prior ancestry information. We have developed a panel of 100 unlinked ancestry-informative SNP markers that can detect mixed ancestry within up to four generations of dog-wolf hybridization based on simulations of seven genealogical classes constructed following the rules of Mendelian inheritance. We establish 95 % confidence regions around the spatial clustering of each genealogical class using a tertiary plot of allele dosage and heterozygosity. The first- and second-backcrossed-generation hybrids were the most distinct from parental populations, with >90 % correctly assigned to genealogical class. In this article we provide a tool kit with population-level statistical quantification that can detect recent dog-wolf hybridization using a panel of dog-wolf ancestry-informative SNPs with divergent allele frequency distributions.


Subject(s)
Dogs/genetics , Genotype , Hybridization, Genetic , Polymorphism, Single Nucleotide , Wolves/genetics , Alleles , Animals , Gene Frequency , Genetic Loci , Microsatellite Repeats , Principal Component Analysis
10.
Vet Microbiol ; 156(1-2): 189-92, 2012 Apr 23.
Article in English | MEDLINE | ID: mdl-21963416

ABSTRACT

Although swine origin A/H1N1/2009 influenza virus (hereafter "pH1N1″) has been detected in swine in 20 countries, there has been no published surveillance of the virus in African livestock. The objective of this study was to assess the circulation of influenza A viruses, including pH1N1 in swine in Cameroon, Central Africa. We collected 108 nasal swabs and 98 sera samples from domestic pigs randomly sampled at 11 herds in villages and farms in Cameroon. pH1N1 was isolated from two swine sampled in northern Cameroon in January 2010. Sera from 28% of these herds were positive for influenza A by competitive ELISA and 92.6% of these swine showed cross reactivity with pandemic A/H1N1/2009 influenza virus isolated from humans. These results provide the first evidence of this virus in the animal population in Africa. In light of the significant role of swine in the ecology of influenza viruses, our results call for greater monitoring and study in Central Africa.


Subject(s)
Orthomyxoviridae Infections/veterinary , Swine Diseases/virology , Animals , Cameroon/epidemiology , Enzyme-Linked Immunosorbent Assay , Humans , Influenza A Virus, H1N1 Subtype , Male , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Sus scrofa , Swine , Swine Diseases/epidemiology
11.
Genome Res ; 21(8): 1294-305, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21566151

ABSTRACT

High-throughput genotyping technologies developed for model species can potentially increase the resolution of demographic history and ancestry in wild relatives. We use a SNP genotyping microarray developed for the domestic dog to assay variation in over 48K loci in wolf-like species worldwide. Despite the high mobility of these large carnivores, we find distinct hierarchical population units within gray wolves and coyotes that correspond with geographic and ecologic differences among populations. Further, we test controversial theories about the ancestry of the Great Lakes wolf and red wolf using an analysis of haplotype blocks across all 38 canid autosomes. We find that these enigmatic canids are highly admixed varieties derived from gray wolves and coyotes, respectively. This divergent genomic history suggests that they do not have a shared recent ancestry as proposed by previous researchers. Interspecific hybridization, as well as the process of evolutionary divergence, may be responsible for the observed phenotypic distinction of both forms. Such admixture complicates decisions regarding endangered species restoration and protection.


Subject(s)
Biological Evolution , Canidae/genetics , Genome , Animals , Coyotes/genetics , Dogs/genetics , Evolution, Molecular , Genotype , Haplotypes , Hybridization, Genetic , Phenotype , Polymorphism, Single Nucleotide , Wolves/genetics
12.
Evol Appl ; 4(2): 397-413, 2011 Mar.
Article in English | MEDLINE | ID: mdl-25567981

ABSTRACT

Human-induced land use changes are causing extensive habitat fragmentation. As a result, many species are not able to shift their ranges in response to climate change and will likely need to adapt in situ to changing climate conditions. Consequently, a prudent strategy to maintain the ability of populations to adapt is to focus conservation efforts on areas where levels of intraspecific variation are high. By doing so, the potential for an evolutionary response to environmental change is maximized. Here, we use modeling approaches in conjunction with environmental variables to model species distributions and patterns of genetic and morphological variation in seven Ecuadorian amphibian, bird, and mammal species. We then used reserve selection software to prioritize areas for conservation based on intraspecific variation or species-level diversity. Reserves selected using species richness and complementarity showed little overlap with those based on genetic and morphological variation. Priority areas for intraspecific variation were mainly located along the slopes of the Andes and were largely concordant among species, but were not well represented in existing reserves. Our results imply that in order to maximize representation of intraspecific variation in reserves, genetic and morphological variation should be included in conservation prioritization.

13.
Mol Ecol ; 19(20): 4412-27, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20723068

ABSTRACT

The successful re-introduction of grey wolves to the western United States is an impressive accomplishment for conservation science. However, the degree to which subpopulations are genetically structured and connected, along with the preservation of genetic variation, is an important concern for the continued viability of the metapopulation. We analysed DNA samples from 555 Northern Rocky Mountain wolves from the three recovery areas (Greater Yellowstone Area, Montana, and Idaho), including all 66 re-introduced founders, for variation in 26 microsatellite loci over the initial 10-year recovery period (1995-2004). The population maintained high levels of variation (H(O) = 0.64-0.72; allelic diversity k=7.0-10.3) with low levels of inbreeding (F(IS) < 0.03) and throughout this period, the population expanded rapidly (n(1995) =101; n(2004) =846). Individual-based Bayesian analyses revealed significant population genetic structure and identified three subpopulations coinciding with designated recovery areas. Population assignment and migrant detection were difficult because of the presence of related founders among different recovery areas and required a novel approach to determine genetically effective migration and admixture. However, by combining assignment tests, private alleles, sibship reconstruction, and field observations, we detected genetically effective dispersal among the three recovery areas. Successful conservation of Northern Rocky Mountain wolves will rely on management decisions that promote natural dispersal dynamics and minimize anthropogenic factors that reduce genetic connectivity.


Subject(s)
Gene Flow , Genetic Variation , Genetics, Population/methods , Wolves/genetics , Alleles , Animals , Bayes Theorem , Cluster Analysis , Founder Effect , Idaho , Inbreeding , Likelihood Functions , Microsatellite Repeats , Montana , Sequence Analysis, DNA , Wyoming
14.
BMC Infect Dis ; 10: 187, 2010 Jun 23.
Article in English | MEDLINE | ID: mdl-20573228

ABSTRACT

BACKGROUND: Avian influenza virus (AIV) is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur and how high pathogenicity influenza might travel if it enters wild bird populations in the US. Modelling the number of AIV cases is important because the rate of co-infection with multiple AIV subtypes increases with the number of cases and co-infection is the source of reassortment events that give rise to new strains of influenza, which occurred before the 1968 pandemic. Aquatic birds in the orders Anseriformes and Charadriiformes have been recognized as reservoirs of AIV since the 1970s. However, little is known about influenza prevalence in terrestrial birds in the order Passeriformes. Since passerines share the same habitat as poultry, they may be more effective transmitters of the disease to humans than aquatic birds. We analyze 152 passerine species including the American Robin (Turdus migratorius) and Swainson's Thrush (Catharus ustulatus). METHODS: We formulate a regression model to predict AIV cases throughout the US at the county scale as a function of 12 environmental variables, sampling effort, and proximity to other counties with influenza outbreaks. Our analysis did not distinguish between types of influenza, including low or highly pathogenic forms. RESULTS: Analysis of 13,046 cloacal samples collected from 225 bird species in 41 US states between 2005 and 2008 indicates that the average prevalence of influenza in passerines is greater than the prevalence in eight other avian orders. Our regression model identifies the Great Plains and the Pacific Northwest as high-risk areas for AIV. Highly significant predictors of AIV include the amount of harvested cropland and the first day of the year when a county is snow free. CONCLUSIONS: Although the prevalence of influenza in waterfowl has long been appreciated, we show that 22 species of song birds and perching birds (order Passeriformes) are influenza reservoirs in the contiguous US.


Subject(s)
Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Passeriformes/virology , Risk Assessment , Animals , Cloaca/virology , Geography , Models, Statistical , Prevalence , United States
15.
Nature ; 464(7290): 898-902, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20237475

ABSTRACT

Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.


Subject(s)
Animals, Domestic/genetics , Dogs/genetics , Genome/genetics , Haplotypes/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Animals, Domestic/classification , Animals, Wild/classification , Animals, Wild/genetics , Breeding , Computational Biology , Dogs/classification , Evolution, Molecular , Asia, Eastern/ethnology , Middle East/ethnology , Phenotype , Phylogeny , Wolves/classification , Wolves/genetics
16.
Evol Appl ; 3(1): 1-16, 2010 Jan.
Article in English | MEDLINE | ID: mdl-25567899

ABSTRACT

To better understand how environment shapes phenotypic and genetic variation, we explore the relationship between environmental variables across Ecuador and genetic and morphological variation in the wedge-billed woodcreeper (Glyphorynchus spirurus), a common Neotropical rainforest bird species. Generalized dissimilarity models show that variation in amplified fragment length polymorphism markers was strongly associated with environmental variables on both sides of the Andes, but could also partially be explained by geographic distance on the western side of the Andes. Tarsus, wing, tail, and bill lengths and bill depth were well explained by environmental variables on the western side of the Andes, whereas only tarsus length was well explained on the eastern side. Regions that comprise the highest rates of genetic and phenotypic change occur along steep elevation gradients in the Andes. Such environmental gradients are likely to be particularly important for maximizing adaptive diversity to minimize the impacts of climate change. Using a framework for conservation prioritization based on preserving ecological and evolutionary processes, we found little overlap between currently protected areas in Ecuador and regions we predicted to be important in maximizing adaptive variation.

18.
Mol Ecol ; 18(9): 1848-62, 2009 May.
Article in English | MEDLINE | ID: mdl-19302356

ABSTRACT

Landscape genetics is an emerging discipline that utilizes environmental and historical data to understand geographic patterns of genetic diversity. Niche modelling has added a new dimension to such efforts by allowing species-environmental associations to be projected into the past so that hypotheses about historical vicariance can be generated and tested independently with genetic data. However, previous approaches have primarily utilized DNA sequence data to test inferences about historical isolation and may have missed very recent episodes of environmentally mediated divergence. We type 15 microsatellite loci in California mule deer and identify five genetic groupings through a Structure analysis that are also well predicted by environmental data. We project the niches of these five deer ecotypes to the last glacial maximum (LGM) and show they overlap to a much greater extent than today, suggesting that vicariance associated with the LGM cannot explain the present-day genetic patterns. Further, we analyse mitochondrial DNA (mtDNA) sequence trees to search for evidence of historical vicariance and find only two well-supported clades. A coalescence-based analysis of mtDNA data shows that the genetic divergence of the mule deer genetic clusters in California is recent and appears to be mediated by ecological factors. The importance of environmental factors in explaining the genetic diversity of California mule deer is unexpected given that they are highly mobile species and have a broad habitat distribution. Geographic differences in the timing of reproduction and peak vegetation as well as habitat choice reflecting natal origin may explain the persistence of genetic subdivision.


Subject(s)
Deer/genetics , Genetic Variation , Genetics, Population , Animals , California , Cluster Analysis , DNA, Mitochondrial/genetics , Ecosystem , Environment , Evolution, Molecular , Female , Geography , Haplotypes , Male , Microsatellite Repeats , Models, Genetic , Population Dynamics , Sequence Alignment , Sequence Analysis, DNA
19.
Mol Ecol Resour ; 9(1): 210-2, 2009 Jan.
Article in English | MEDLINE | ID: mdl-21564605

ABSTRACT

We characterized 15 polymorphic tetranucleotide microsatellite markers for the ringtail, Bassariscus astutus. We tested these loci in 21 individuals captured in Arizona and Texas and found six to 19 alleles per locus. Observed and expected heterozygosities ranged from 0.381 to 1.000 and from 0.381 to 0.941, respectively. All loci were in Hardy-Weinberg equilibrium, and none were in linkage disequilibrium. These markers may be used to investigate population genetics and mating patterns in this species.

20.
Mol Ecol Resour ; 9(6): 1527-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-21564949

ABSTRACT

We developed a library of twelve polymorphic di- and tri-nucleotide microsatellite markers for Megalopta genalis, a facultatively eusocial sweat bee. We tested each locus in a panel of 23 unrelated females and found 7-20 alleles per locus. Observed and expected heterozygosities ranged from 0.65 to 0.96 and from 0.69 to 0.95 respectively. None of the loci deviated from Hardy-Weinberg equilibrium proportions or was found to be in gametic disequilibrium.

SELECTION OF CITATIONS
SEARCH DETAIL
...