Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903299

ABSTRACT

Cancer therapies use different compounds of synthetic and natural origin. However, despite some positive results, relapses are common, as standard chemotherapy regimens are not fully capable of completely eradicating cancer stem cells. While vinblastine is a common chemotherapeutic agent in the treatment of blood cancers, the development of vinblastine resistance is often observed. Here, we performed cell biology and metabolomics studies to investigate the mechanisms of vinblastine resistance in P3X63Ag8.653 murine myeloma cells. Treatment with low doses of vinblastine in cell media led to the selection of vinblastine-resistant cells and the acquisition of such resistance in previously untreated, murine myeloma cells in culture. To determine the mechanistic basis of this observation, we performed metabolomic analyses of resistant cells and resistant drug-induced cells in a steady state, or incubation with stable isotope-labeled tracers, namely, 13C 15N-amino acids. Taken together, these results indicate that altered amino acid uptake and metabolism could contribute to the acquisition of vinblastine resistance in blood cancer cells. These results will be useful for further research on human cell models.


Subject(s)
Multiple Myeloma , Vinblastine , Mice , Humans , Animals , Vinblastine/pharmacology , Drug Resistance, Neoplasm , Tumor Cells, Cultured , Neoplasm Recurrence, Local
2.
EMBO J ; 41(1): e105026, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34791698

ABSTRACT

Intronic GGGGCC (G4C2) hexanucleotide repeat expansion within the human C9orf72 gene represents the most common cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of repeat-containing C9orf72 RNA results in the production of neurotoxic dipeptide-repeat proteins (DPRs). Here, we developed a high-throughput drug screen for the identification of positive and negative modulators of DPR levels. We found that HSP90 inhibitor geldanamycin and aldosterone antagonist spironolactone reduced DPR levels by promoting protein degradation via the proteasome and autophagy pathways respectively. Surprisingly, cAMP-elevating compounds boosting protein kinase A (PKA) activity increased DPR levels. Inhibition of PKA activity, by both pharmacological and genetic approaches, reduced DPR levels in cells and rescued pathological phenotypes in a Drosophila model of C9ALS/FTD. Moreover, knockdown of PKA-catalytic subunits correlated with reduced translation efficiency of DPRs, while the PKA inhibitor H89 reduced endogenous DPR levels in C9ALS/FTD patient-derived iPSC motor neurons. Together, our results suggest new and druggable pathways modulating DPR levels in C9ALS/FTD.


Subject(s)
C9orf72 Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Dipeptides/metabolism , Proteolysis , Small Molecule Libraries/pharmacology , Animals , Cell Line , Codon, Initiator/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Repeat Expansion/genetics , Disease Models, Animal , Drosophila/drug effects , Frontotemporal Dementia/pathology , HEK293 Cells , High-Throughput Screening Assays , Humans , Induced Pluripotent Stem Cells/pathology , Isoquinolines/pharmacology , Longevity/drug effects , Motor Neurons/drug effects , Motor Neurons/pathology , Protein Biosynthesis/drug effects , Proteolysis/drug effects , RNA Interference , Sulfonamides/pharmacology
3.
iScience ; 24(3): 102197, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33733063

ABSTRACT

Matrin3 (MATR3) is a nuclear RNA/DNA-binding protein that plays pleiotropic roles in gene expression regulation by directly stabilizing target RNAs and supporting the activity of transcription factors by modulating chromatin architecture. MATR3 is involved in the differentiation of neural cells, and, here, we elucidate its critical functions in regulating pluripotent circuits in human induced pluripotent stem cells (hiPSCs). MATR3 downregulation affects hiPSCs' differentiation potential by altering key pluripotency regulators' expression levels, including OCT4, NANOG, and LIN28A by pleiotropic mechanisms. MATR3 binds to the OCT4 and YTHDF1 promoters favoring their expression. YTHDF1, in turn, binds the m6A-modified OCT4 mRNA. Furthermore, MATR3 is recruited on ribosomes and controls pluripotency regulating the translation of specific transcripts, including NANOG and LIN28A, by direct binding and favoring their stabilization. These results show that MATR3 orchestrates the pluripotency circuitry by regulating the transcription, translational efficiency, and epitranscriptome of specific transcripts.

4.
Stem Cell Res ; 33: 146-150, 2018 12.
Article in English | MEDLINE | ID: mdl-30366341

ABSTRACT

Fibroblasts isolated from an Amyotrophic Lateral Sclerosis (ALS)-patient carrying a mutation in Matrin-3 (p.Q66K -MATR3) gene were reprogrammed to the pluripotency stage by using non-integrating episomal plasmids. We generated the Q66K#44DRM induced pluripotent stem cell (iPSC) line that showed regular karyotype, expressed pluripotency-associated markers and were able to properly differentiate into the three germ layers. The heterozygous missense mutation in the MATR3 gene (p.Q66K), which is associated to ALS disease, was present in the generated iPSC line. Resource table.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Induced Pluripotent Stem Cells/metabolism , Nuclear Matrix-Associated Proteins/genetics , RNA-Binding Proteins/genetics , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...