Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Am J Pharm Educ ; 88(2): 100641, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185465

ABSTRACT

OBJECTIVE: The objective of this review is to provide the conclusions from the American Association of Colleges of Pharmacy (AACP) Council of Deans (COD) Taskforce on Research and Scholarship. FINDINGS: The charges and the findings of the committee are: (1) Define the scholarship needs/opportunities to strengthen the outputs. The committee recommends that AACP update its definitions of research/scholarship to include discovery, integration, application/practice, and teaching/learning. A deployed survey demonstrated a high Special Interest Groups research/scholarship interest. (2) Assemble a toolkit of grant and scholarship resources to assist colleges/schools. The AACP should update the existing funding opportunity listing and combine it with additional resources. (3) Create a framework for effective research collaboration and mentorship. The AACP should identify key areas of pharmacy research and experts to serve as mentors and to meet with external stakeholders. (4) and (5) Consider the need for and purpose of a COD standing committee for research and scholarship. Explore the value of a formal research dean's subcommittee. It was recommended that AACP form a research/scholarship committee or Special Interest Groups and create the Pharmacy Scholarship, Research, and Graduate Education pre-meeting to the Interim Meeting. (6) Identify key statements/outputs of the COD that need to be prepared for publication/sharing. We recommended the key statement/outputs in the areas of discovery, integration, application/practice, and teaching and learning. SUMMARY: The taskforce reviewed the state of research and scholarship across the Academy and provided recommendations with the goal of advancing research across all areas of the pharmacy profession.


Subject(s)
Education, Pharmacy, Graduate , Education, Pharmacy , Pharmacy Research , Pharmacy , United States , Humans , Fellowships and Scholarships , Schools, Pharmacy
2.
Neurocrit Care ; 40(1): 1-37, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040992

ABSTRACT

The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.


Subject(s)
Cardiopulmonary Resuscitation , Emergency Medical Services , Heart Arrest , United States , Humans , Cardiopulmonary Resuscitation/methods , American Heart Association , Heart Arrest/therapy , Critical Care/methods
3.
Circulation ; 149(2): e168-e200, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38014539

ABSTRACT

The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.


Subject(s)
Cardiopulmonary Resuscitation , Emergency Medical Services , Heart Arrest , Humans , American Heart Association , Heart Arrest/diagnosis , Heart Arrest/therapy , Critical Care/methods
4.
Stroke ; 53(5): 1720-1734, 2022 05.
Article in English | MEDLINE | ID: mdl-35272484

ABSTRACT

BACKGROUND: Worsened stroke outcomes with hypertension comorbidity are insensitive to blood pressure-lowering therapies. In an experimental stroke model with comorbid hypertension, we investigated causal roles of ang II (angiotensin II)-mediated stimulation of the brain WNK (with no lysine [K] kinases)-SPAK (STE20/SPS1-related proline/alanine-rich kinase)-NKCC1 (Na-K-Cl cotransporter) complex in worsened outcomes. METHODS: Saline- or ang II-infused C57BL/6J male mice underwent stroke induced by permanent occlusion of the distal branches of the middle cerebral artery. Mice were randomly assigned to receive either vehicle dimethyl sulfoxide/PBS (2 mL/kg body weight/day, IP), a novel SPAK inhibitor, 5-chloro-N-(5-chloro-4-((4-chlorophenyl)(cyano)methyl)-2-methylphenyl)-2-hydroxybenzamide (ZT-1a' 5 mg/kg per day, IP) or a NF-κB (nuclear factor-κB) inhibitor TAT-NBD (transactivator of transcription-NEMO-binding domain' 20 mg/kg per day, IP). Activation of brain NF-κB and WNK-SPAK-NKCC1 cascade as well as ischemic stroke outcomes were examined. RESULTS: Stroke triggered a 2- to 5-fold increase of WNK (isoforms 1, 2, 4), SPAK/OSR1 (oxidative stress-responsive kinase 1), and NKCC1 protein in the ang II-infused hypertensive mouse brains at 24 hours after stroke, which was associated with increased nuclear translocation of phospho-NF-κB protein in the cortical neurons (a Pearson correlation r of 0.77, P<0.005). The upregulation of WNK-SPAK-NKCC1 cascade proteins resulted from increased NF-κB recruitment on Wnk1, Wnk2, Wnk4, Spak, and Nkcc1 gene promoters and was attenuated by NF-κB inhibitor TAT-NBD. Poststroke administration of SPAK inhibitor ZT-1a significantly reduced WNK-SPAK-NKCC1 complex activation, brain lesion size, and neurological function deficits in the ang II-hypertensive mice without affecting blood pressure and cerebral blood flow. CONCLUSIONS: The ang II-induced stimulation of NF-κB transcriptional activity upregulates brain WNK-SPAK-NKCC1 cascade and contributes to worsened ischemic stroke outcomes, illustrating the brain WNK-SPAK-NKCC1 complex as a therapeutic target for stroke with comorbid hypertension.


Subject(s)
Hypertension , Ischemic Stroke , Stroke , Animals , Humans , Male , Mice , Mice, Inbred C57BL , NF-kappa B , Protein Serine-Threonine Kinases , Solute Carrier Family 12, Member 2/genetics , Solute Carrier Family 12, Member 2/metabolism , Stroke/pathology
6.
J Neurotrauma ; 38(17): 2454-2472, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33843262

ABSTRACT

Loss of plasmalemmal integrity may mediate cell death after traumatic brain injury (TBI). Prior studies in controlled cortical impact (CCI) indicated that the membrane resealing agent Kollidon VA64 improved histopathological and functional outcomes. Kollidon VA64 was therefore selected as the seventh therapy tested by the Operation Brain Trauma Therapy consortium, across three pre-clinical TBI rat models: parasagittal fluid percussion injury (FPI), CCI, and penetrating ballistic-like brain injury (PBBI). In each model, rats were randomized to one of four exposures (7-15/group): (1) sham; (2) TBI+vehicle; (3) TBI+Kollidon VA64 low-dose (0.4 g/kg); and (4) TBI+Kollidon VA64 high-dose (0.8 g/kg). A single intravenous VA64 bolus was given 15 min post-injury. Behavioral, histopathological, and serum biomarker outcomes were assessed over 21 days generating a 22-point scoring matrix per model. In FPI, low-dose VA64 produced zero points across behavior and histopathology. High-dose VA64 worsened motor performance compared with TBI-vehicle, producing -2.5 points. In CCI, low-dose VA64 produced intermediate benefit on beam balance and the Morris water maze (MWM), generating +3.5 points, whereas high-dose VA64 showed no effects on behavior or histopathology. In PBBI, neither dose altered behavior or histopathology. Regarding biomarkers, significant increases in glial fibrillary acidic protein (GFAP) levels were seen in TBI versus sham at 4 h and 24 h across models. Benefit of low-dose VA64 on GFAP was seen at 24 h only in FPI. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) was increased in TBI compared with vehicle across models at 4 h but not at 24 h, without treatment effects. Overall, low dose VA64 generated +4.5 points (+3.5 in CCI) whereas high dose generated -2.0 points. The modest/inconsistent benefit observed reduced enthusiasm to pursue further testing.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Pyrrolidines/therapeutic use , Vinyl Compounds/therapeutic use , Animals , Behavior, Animal , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/psychology , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Male , Rats , Rats, Sprague-Dawley , Recovery of Function
7.
Article in English | MEDLINE | ID: mdl-35083470

ABSTRACT

BACKGROUND: Following aneurysmal subarachnoid hemorrhage (aSAH), the brain is susceptible to ferroptosis, a type of iron-dependent cell death. Therapeutic intervention targeting the iron homeostasis pathway shows promise for mitigating ferroptosis and improving recovery in animal models, but little work has been conducted in humans. DNA methylation (DNAm) plays a key role in gene expression and brain function, plasticity, and injury recovery, making it a potentially useful biomarker of outcomes or therapeutic target for intervention. Therefore, in this longitudinal, observational study, we examined the relationships between trajectories of DNAm in candidate genes related to iron homeostasis and acute (cerebral vasospasm and delayed cerebral ischemia) and long-term (Glasgow Outcome Scale [GOS, unfavorable = 1-3] and death) patient outcomes after aSAH. RESULTS: Longitudinal, genome-wide DNAm data were generated from DNA extracted from post-aSAH cerebrospinal fluid (n = 260 participants). DNAm trajectories of 637 CpG sites in 36 candidate genes related to iron homeostasis were characterized over 13 days post-aSAH using group-based trajectory analysis, an unsupervised clustering method. Significant associations were identified between inferred DNAm trajectory groups at several CpG sites and acute and long-term outcomes. Among our results, cg25713625 in the STEAP3 metalloreductase gene (STEAP3) stood out. Specifically, in comparing the highest cg25713625 DNAm trajectory group with the lowest, we observed significant associations (i.e., based on p-values less than an empirical significance threshold) with unfavorable GOS at 3 and 12 months (OR = 11.7, p = 0.0006 and OR = 15.6, p = 0.0018, respectively) and death at 3 and 12 months (OR = 19.1, p = 0.0093 and OR = 12.8, p = 0.0041, respectively). These results were replicated in an independent sample (n = 100 participants) observing significant associations with GOS at 3 and 12 months (OR = 8.2, p = 0.001 and OR = 6.3, p = 0.0.0047, respectively) and death at 3 months (OR = 2.3, p = 0.008) and a suggestive association (i.e., p-value < 0.05 not meeting an empirical significance threshold) with death at 12 months (OR = 2.0, p = 0.0272). In both samples, an additive effect of the DNAm trajectory group was observed as the percentage of participants with unfavorable long-term outcomes increased substantially with higher DNAm trajectory groups. CONCLUSION: Our results support a role for DNAm of cg25713625/STEAP3 in recovery following aSAH. Additional research is needed to further explore the role of DNAm of cg25713625/STEAP3 as a biomarker of unfavorable outcomes, or therapeutic target to improve outcomes, to translate these findings clinically.

8.
Article in English | MEDLINE | ID: mdl-35359917

ABSTRACT

Background: Delayed cerebral ischemia (DCI) is a common secondary complication and an important cause of disability and mortality among patients who survive aneurysmal subarachnoid hemorrhage (aSAH). Knowledge on DCI pathogenesis, risk factors, and biomarkers are essential for early detection and improved prognosis. To investigate the role of DNA methylation in DCI risk, we conducted an epigenome-wide association study (EWAS) in 68 patients followed up to 1 year after the initial aneurysm rupture. Blood samples were collected within 48 h post hemorrhage and used for DNA methylation profiling at ~ 450k CpG sites. A separate cohort of 175 patients was sequenced for the top CpG sites from the discovery analysis for a replication of the EWAS findings. Results: EWAS did not identify any epigenome-wide significant CpGs. The top signal, cg18031596, was annotated to ANGPT1, a gene with critical functions in angiogenesis after vascular injury. Post hoc power calculations indicated a well-powered discovery analysis for cg18031596. Analysis of the replication cohort showed that four out of the five CpG sites sequenced at the ANGPT1 locus passed a Bonferroni-adjusted significance threshold. In a pooled analysis of the entire sample, three out of five yielded a significant p-value, and the top association signal (p-value = 0.004) was seen for a CpG that was not originally measured in the discovery EWAS. However, four ANGPT1 CpG sites had an opposite effect direction in the replication analysis compared to the discovery EWAS, marking a failure of replication. We carefully examined this observed flip in directions and propose several possible explanations in addition to that it was a random chance that ANGPT1 ranked at the top in the discovery EWAS. Conclusions: We failed to demonstrate a significant and consistent effect of ANGPT1 methylation in DCI risk in two cohorts. Though the replication attempt to weaken the overall support of this gene, given its relevant function and top rank of significance in the EWAS, our results call for future studies of larger aSAH cohorts to determine its relevance for the occurrence of DCI.

9.
J Neurotrauma ; 38(5): 628-645, 2021 03.
Article in English | MEDLINE | ID: mdl-33203303

ABSTRACT

Glibenclamide (GLY) is the sixth drug tested by the Operation Brain Trauma Therapy (OBTT) consortium based on substantial pre-clinical evidence of benefit in traumatic brain injury (TBI). Adult Sprague-Dawley rats underwent fluid percussion injury (FPI; n = 45), controlled cortical impact (CCI; n = 30), or penetrating ballistic-like brain injury (PBBI; n = 36). Efficacy of GLY treatment (10-µg/kg intraperitoneal loading dose at 10 min post-injury, followed by a continuous 7-day subcutaneous infusion [0.2 µg/h]) on motor, cognitive, neuropathological, and biomarker outcomes was assessed across models. GLY improved motor outcome versus vehicle in FPI (cylinder task, p < 0.05) and CCI (beam balance, p < 0.05; beam walk, p < 0.05). In FPI, GLY did not benefit any other outcome, whereas in CCI, it reduced 21-day lesion volume versus vehicle (p < 0.05). On Morris water maze testing in CCI, GLY worsened performance on hidden platform latency testing versus sham (p < 0.05), but not versus TBI vehicle. In PBBI, GLY did not improve any outcome. Blood levels of glial fibrillary acidic protein and ubiquitin carboxyl terminal hydrolase-1 at 24 h did not show significant treatment-induced changes. In summary, GLY showed the greatest benefit in CCI, with positive effects on motor and neuropathological outcomes. GLY is the second-highest-scoring agent overall tested by OBTT and the only drug to reduce lesion volume after CCI. Our findings suggest that leveraging the use of a TBI model-based phenotype to guide treatment (i.e., GLY in contusion) might represent a strategic choice to accelerate drug development in clinical trials and, ultimately, achieve precision medicine in TBI.


Subject(s)
Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/drug therapy , Glyburide/therapeutic use , Hypoglycemic Agents/therapeutic use , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Glyburide/pharmacology , Hypoglycemic Agents/pharmacology , Male , Maze Learning/drug effects , Maze Learning/physiology , Rats , Rats, Sprague-Dawley , Treatment Outcome
10.
J Am Soc Nephrol ; 31(7): 1496-1508, 2020 07.
Article in English | MEDLINE | ID: mdl-32424001

ABSTRACT

BACKGROUND: Studies have suggested that estrogens may protect mice from AKI. Estrogen sulfotransferase (SULT1E1, or EST) plays an important role in estrogen homeostasis by sulfonating and deactivating estrogens, but studies on the role of SULT1E1 in AKI are lacking. METHODS: We used the renal ischemia-reperfusion model to investigate the role of SULT1E1 in AKI. We subjected wild-type mice, Sult1e1 knockout mice, and Sult1e1 knockout mice with liver-specific reconstitution of SULT1E1 expression to bilateral renal ischemia-reperfusion or sham surgery, either in the absence or presence of gonadectomy. We assessed relevant biochemical, histologic, and gene expression markers of kidney injury. We also used wild-type mice treated with the SULT1E1 inhibitor triclosan to determine the effect of pharmacologic inhibition of SULT1E1 on AKI. RESULTS: AKI induced the expression of Sult1e1 in a tissue-specific and sex-specific manner. It induced expression of Sult1e1 in the liver in both male and female mice, but Sult1e1 induction in the kidney occurred only in male mice. Genetic knockout or pharmacologic inhibition of Sult1e1 protected mice of both sexes from AKI, independent of the presence of sex hormones. Instead, a gene profiling analysis indicated that the renoprotective effect was associated with increased vitamin D receptor signaling. Liver-specific transgenic reconstitution of SULT1E1 in Sult1e1 knockout mice abolished the protection in male mice but not in female mice, indicating that Sult1e1's effect on AKI was also tissue-specific and sex-specific. CONCLUSIONS: SULT1E1 appears to have a novel function in the pathogenesis of AKI. Our findings suggest that inhibitors of SULT1E1 might have therapeutic utility in the clinical management of AKI.


Subject(s)
Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Liver/metabolism , Sulfotransferases/genetics , Sulfotransferases/metabolism , Acute Kidney Injury/etiology , Animals , Calcitriol/pharmacology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Female , Gene Expression , Gene Expression Profiling , Inflammation/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Kidney/metabolism , Male , Mice , Mice, Knockout , Orchiectomy , Ovariectomy , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Reperfusion Injury/complications , Sex Factors , Signal Transduction , Sulfotransferases/antagonists & inhibitors , Triclosan/pharmacology
11.
Neurocrit Care ; 33(3): 749-758, 2020 12.
Article in English | MEDLINE | ID: mdl-32246437

ABSTRACT

BACKGROUND/OBJECTIVE: Iron can be detrimental to most tissues both in excess and in deficiency. The brain in particular is highly susceptible to the consequences of excessive iron, especially during blood brain barrier disruption after injury. Preliminary evidence suggests that iron homeostasis is important during recovery after neurologic injury; therefore, the exploration of genetic variability in genes involved in iron homeostasis is an important area of patient outcomes research. The purpose of this study was to examine the relationship between tagging single nucleotide polymorphisms (SNPs) in candidate genes related to iron homeostasis and acute and long-term patient outcomes after aneurysmal subarachnoid hemorrhage (aSAH). METHODS: This study was a longitudinal, observational, candidate gene association study of participants with aSAH that used a two-tier design including tier 1 (discovery, n = 197) and tier 2 (replication, n = 277). Participants were followed during the acute outcome phase for development of cerebral vasospasm and delayed cerebral ischemia (DCI) and during the long-term outcome phase for death and gross functional outcome using the Glasgow Outcome Scale (GOS; poor = 1-3). Genetic association analyses were performed using a logistic regression model adjusted for age, sex, and Fisher grade. Approximate Bayes factors (ABF) and Bayesian false discovery probabilities (BFDP) were used to prioritize and interpret results. RESULTS: In tier 1, 235 tagging SNPs in 28 candidate genes were available for analysis and 26 associations (20 unique SNPs in 12 genes) were nominated for replication in tier 2. In tier 2, we observed an increase in evidence of association for three associations in the ceruloplasmin (CP) and cubilin (CUBN) genes. We observed an association of rs17838831 (CP) with GOS at 3 months (tier 2 results, odds ratio [OR] = 2.10, 95% confidence interval [CI] = 1.14-3.86, p = 0.018, ABF = 0.52, and BFDP = 70.8%) and GOS at 12 months (tier 2 results, OR = 1.86, 95% CI 0.98-3.52, p = 0.058, ABF = 0.72, and BFDP = 77.3%) as well as rs10904850 (CUBN) with DCI (tier 2 results, OR = 0.70, 95% CI 0.48-1.02, p = 0.064, ABF = 0.59, and BFDP = 71.8%). CONCLUSIONS: Among the genes examined, our findings support a role for CP and CUBN in patient outcomes after aSAH. In an effort to translate these findings into clinical utility and improve outcomes after aSAH, additional research is needed to examine the functional roles of these genes after aSAH.


Subject(s)
Brain Ischemia , Homeostasis , Iron , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Bayes Theorem , Ceruloplasmin/genetics , Female , Genome-Wide Association Study , Homeostasis/genetics , Humans , Iron/metabolism , Receptors, Cell Surface/genetics , Subarachnoid Hemorrhage/genetics
12.
Clin Pharmacol Ther ; 108(1): 40-53, 2020 07.
Article in English | MEDLINE | ID: mdl-32119114

ABSTRACT

Quantitative systems pharmacology (QSP) has emerged as a transformative science in drug discovery and development. It is now time to fully rethink the biological functions of drug metabolizing enzymes (DMEs) and transporters within the framework of QSP models. The large set of DME and transporter genes are generally considered from the perspective of the absorption, distribution, metabolism, and excretion (ADME) of drugs. However, there is a growing amount of data on the endogenous physiology of DMEs and transporters. Recent studies-including systems biology analyses of "omics" data as well as metabolomics studies-indicate that these enzymes and transporters, which are often among the most highly expressed genes in tissues like liver, kidney, and intestine, have coordinated roles in fundamental biological processes. Multispecific DMEs and transporters work together with oligospecific and monospecific ADME proteins in a large multiorgan remote sensing and signaling network. We use the Remote Sensing and Signaling Theory (RSST) to examine the roles of DMEs and transporters in intratissue, interorgan, and interorganismal communication via metabolites and signaling molecules. This RSST-based view is applicable to bile acids, uric acid, eicosanoids, fatty acids, uremic toxins, and gut microbiome products, among other small organic molecules of physiological interest. Rooting this broader perspective of DMEs and transporters within QSP may facilitate an improved understanding of fundamental biology, physiologically based pharmacokinetics, and the prediction of drug toxicities based upon the interplay of these ADME proteins with key pathways in metabolism and signaling. The RSST-based view should also enable more tailored pharmacotherapy in the setting of kidney disease, liver disease, metabolic syndrome, and diabetes. We further discuss the pharmaceutical and regulatory implications of this revised view through the lens of systems physiology.


Subject(s)
Enzymes/metabolism , Membrane Transport Proteins/metabolism , Systems Biology/methods , Animals , Biological Transport , Drug Development/methods , Humans , Metabolomics , Models, Biological , Pharmaceutical Preparations/metabolism
13.
J Clin Invest ; 130(6): 3124-3136, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32182222

ABSTRACT

Chronic inflammation is a pathologic feature of neurodegeneration and aging; however, the mechanism regulating this process is not understood. Melatonin, an endogenous free radical scavenger synthesized by neuronal mitochondria, decreases with aging and neurodegeneration. We proposed that insufficient melatonin levels impair mitochondrial homeostasis, resulting in mitochondrial DNA (mtDNA) release and activation of cytosolic DNA-mediated inflammatory response in neurons. We found increased mitochondrial oxidative stress and decreased mitochondrial membrane potential, with higher mtDNA release in brain and primary cerebro-cortical neurons of melatonin-deficient aralkylamine N-acetyltransferase (AANAT) knockout mice. Cytosolic mtDNA activated the cGAS/STING/IRF3 pathway, stimulating inflammatory cytokine generation. We found that Huntington's disease mice had increased mtDNA release, cGAS activation, and inflammation, all inhibited by exogenous melatonin. Thus, we demonstrated that cytosolic mtDNA activated the inflammatory response in aging and neurodegeneration, a process modulated by melatonin. Furthermore, our data suggest that AANAT knockout mice are a model of accelerated aging.


Subject(s)
Aging/metabolism , Cytosol/metabolism , DNA, Mitochondrial/metabolism , Huntington Disease/metabolism , Melatonin/pharmacology , Neurons/metabolism , Signal Transduction/drug effects , Aging/genetics , Aging/pathology , Animals , Cytosol/pathology , DNA, Mitochondrial/genetics , Female , Humans , Huntington Disease/genetics , Huntington Disease/pathology , Male , Mice , Mice, Knockout , Neurons/pathology
14.
Theranostics ; 10(6): 2463-2478, 2020.
Article in English | MEDLINE | ID: mdl-32194813

ABSTRACT

There is an urgent and unmet need to develop effective therapies for triple negative breast cancers (TNBCs) which are much more aggressive and have poor prognosis due to lack of receptor targets for Her2-targeted and endocrine therapy. In this study we systematically evaluated the effect of Vorinostat (SAHA, a pan-HDAC inhibitor) in reactivating the expression of functional estrogen receptor α (ERα) and synergizing with tamoxifen (TAM, a selective estrogen-receptor modulator) in antitumor activity. In addition, a SAHA prodrug-based dual functional nanocarrier was developed for codelivery of SAHA and TAM for effective combination therapy. Methods: A SAHA-containing polymeric nanocarrier, POEG-co-PVDSAHA was developed via reversible addition-fragmentation transfer (RAFT) polymerization with SAHA incorporated into the polymer through a redox-responsive disulfide linkage. The effect of both free SAHA and POEG-co-PVDSAHA on reactivating the expression of functional ERα was investigated in several human and murine TNBC cell lines via examining the mRNA and protein expression of ERα target genes. The cytotoxicity of free SAHA and TAM combination and TAM-loaded POEG-co-PVDSAHA micelles was examined via MTT assay. The in vivo antitumor activity of TAM-loaded POEG-co-PVDSAHA was investigated in a murine breast cancer model (4T1.2). Results: Both free SAHA and POEG-co-PVDSAHA were effective in inducing the reexpression of functional estrogen receptor α (ERα), which may have helped to sensitize TNBCs to TAM. More importantly, POEG-co-PVDSAHA self-assembled to form small-sized micellar carrier that is effective in formulating and codelivery of TAM. TAM-loaded POEG-co-PVDSAHA micelles exhibited enhanced and synergistic cytotoxicity against TNBC cell lines compared with free SAHA, free TAM and TAM loaded into a pharmacologically inert control carrier (POEG-co-PVMA). In addition, codelivery of TAM via POEG-co-PVDSAHA micelles led to significantly improved antitumor efficacy in 4T1.2 tumor model compared with other groups such as combination of free SAHA and TAM and TAM-loaded POEG-co-PVMA micelles. Conclusion: Our prodrug-based co-delivery system may provide an effective and simple strategy to re-sensitize TNBCs to TAM-based hormone therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Drug Carriers/administration & dosage , Prodrugs/administration & dosage , Tamoxifen/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Vorinostat/administration & dosage , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Drug Carriers/pharmacology , Drug Combinations , Drug Synergism , Estrogen Receptor alpha/metabolism , Female , Glutathione/metabolism , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Mice, Inbred BALB C , Micelles , Nanoparticles/administration & dosage , Oxidation-Reduction/drug effects , Polymers/chemistry , Polymers/pharmacology , Prodrugs/pharmacology , Tamoxifen/pharmacology , Triple Negative Breast Neoplasms/pathology , Vorinostat/pharmacology
15.
Nat Commun ; 11(1): 78, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31911626

ABSTRACT

The SLC12A cation-Cl- cotransporters (CCC), including NKCC1 and the KCCs, are important determinants of brain ionic homeostasis. SPAK kinase (STK39) is the CCC master regulator, which stimulates NKCC1 ionic influx and inhibits KCC-mediated efflux via phosphorylation at conserved, shared motifs. Upregulation of SPAK-dependent CCC phosphorylation has been implicated in several neurological diseases. Using a scaffold-hybrid strategy, we develop a novel potent and selective SPAK inhibitor, 5-chloro-N-(5-chloro-4-((4-chlorophenyl)(cyano)methyl)-2-methylphenyl)-2-hydroxybenzamide ("ZT-1a"). ZT-1a inhibits NKCC1 and stimulates KCCs by decreasing their SPAK-dependent phosphorylation. Intracerebroventricular delivery of ZT-1a decreases inflammation-induced CCC phosphorylation in the choroid plexus and reduces cerebrospinal fluid (CSF) hypersecretion in a model of post-hemorrhagic hydrocephalus. Systemically administered ZT-1a reduces ischemia-induced CCC phosphorylation, attenuates cerebral edema, protects against brain damage, and improves outcomes in a model of stroke. These results suggest ZT-1a or related compounds may be effective CCC modulators with therapeutic potential for brain disorders associated with impaired ionic homeostasis.


Subject(s)
Brain/metabolism , Enzyme Inhibitors/administration & dosage , Hydrocarbons, Chlorinated/administration & dosage , Nitriles/administration & dosage , Protein Serine-Threonine Kinases/antagonists & inhibitors , Solute Carrier Family 12, Member 2/metabolism , Stroke/drug therapy , Animals , Brain/drug effects , Brain/enzymology , Humans , Mice , Mice, Inbred C57BL , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Solute Carrier Family 12, Member 2/genetics , Stroke/genetics , Stroke/metabolism
16.
J Neurotrauma ; 37(22): 2435-2444, 2020 11 15.
Article in English | MEDLINE | ID: mdl-30816062

ABSTRACT

The purpose of this review is to highlight the pharmacological barrier to drug development for traumatic brain injury (TBI) and to discuss best practice strategies to overcome such barriers. Specifically, this article will review the pharmacological considerations of moving from the disease target "hit" to the "lead" compound with drug-like and central nervous system (CNS) penetrant properties. In vitro assessment of drug-like properties will be detailed, followed by pre-clinical studies to ensure adequate pharmacokinetic and pharmacodynamic characteristics of response. The importance of biomarker development and utilization in both pre-clinical and clinical studies will be detailed, along with the importance of identifying diagnostic, pharmacodynamic/response, and prognostic biomarkers of injury type or severity, drug target engagement, and disease progression. This review will detail the important considerations in determining in vivo pre-clinical dose selection, as well as cross-species and human equivalent dose selection. Specific use of allometric scaling, pharmacokinetic and pharmacodynamic criteria, as well as incorporation of biomarker assessments in human dose selection for clinical trial design will also be discussed. The overarching goal of this review is to detail the pharmacological considerations in the drug development process as a method to improve both pre-clinical and clinical study design as we evaluate novel therapies to improve outcomes in patients with TBI.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Drug Development/methods , Neuroprotective Agents/pharmacology , Animals , Biomarkers/metabolism , Humans
17.
J Neurotrauma ; 37(22): 2353-2371, 2020 11 15.
Article in English | MEDLINE | ID: mdl-30520681

ABSTRACT

New neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks. We discuss the need for more robust therapies. We present concepts for traditional and novel approaches to defining therapeutic targets. We review lessons learned from the ongoing work of the pre-clinical drug and biomarker screening consortium Operation Brain Trauma Therapy and suggest ways to further enhance pre-clinical consortia. Biomarkers have emerged that empower choice and assessment of target engagement by candidate therapies. Drug combinations may be needed, and it may require moving beyond conventional drug therapies. Precision medicine may also link the right therapy to the right patient, including new approaches to TBI classification beyond the Glasgow Coma Scale or anatomical phenotyping-incorporating new genetic and physiologic approaches. Therapeutic breakthroughs may also come from alternative approaches in clinical investigation (comparative effectiveness, adaptive trial design, use of the electronic medical record, and big data). The full continuum of care must also be represented in translational studies, given the important clinical role of pre-hospital events, extracerebral insults in the intensive care unit, and rehabilitation. TBI research from concussion to coma can cross-pollinate and further advancement of new therapies. Misconceptions can stifle/misdirect TBI research and deserve special attention. Finally, we synthesize an approach to deliver therapeutic breakthroughs in this golden age of TBI research.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Translational Research, Biomedical , Animals , Humans , Neuroprotective Agents/pharmacology
18.
Endocrinology ; 161(1)2020 01 01.
Article in English | MEDLINE | ID: mdl-31837219

ABSTRACT

Hemorrhagic shock (HS) is a potential life-threatening condition that may lead to injury to multiple organs, including the lung. The estrogen sulfotransferase (EST, or SULT1E1) is a conjugating enzyme that sulfonates and deactivates estrogens. In this report, we showed that the expression of Est was markedly induced in the liver but not in the lung of female mice subject to HS and resuscitation. Genetic ablation or pharmacological inhibition of Est effectively protected female mice from HS-induced acute lung injury (ALI), including interstitial edema, neutrophil mobilization and infiltration, and inflammation. The pulmonoprotective effect of Est ablation or inhibition was sex-specific, because the HS-induced ALI was not affected in male Est-/- mice. Mechanistically, the pulmonoprotective phenotype in female Est-/- mice was accompanied by increased lung and circulating levels of estrogens, attenuated pulmonary inflammation, and inhibition of neutrophil mobilization from the bone marrow and neutrophil infiltration to the lung, whereas the pulmonoprotective effect was abolished upon ovariectomy, suggesting that the protection was estrogen dependent. The pulmonoprotective effect of Est ablation was also tissue specific, as loss of Est had little effect on HS-induced liver injury. Moreover, transgenic reconstitution of human EST in the liver of global Est-/- mice abolished the pulmonoprotective effect, suggesting that it is the EST in the liver that sensitizes mice to HS-induced ALI. Taken together, our results revealed a sex- and tissue-specific role of EST in HS-induced ALI. Pharmacological inhibition of EST may represent an effective approach to manage HS-induced ALI.


Subject(s)
Acute Lung Injury/pathology , Shock, Hemorrhagic/complications , Sulfotransferases/metabolism , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Animals , Estrogens/metabolism , Female , Liver/enzymology , Male , Mice , Mice, Knockout , Mice, Transgenic , Resuscitation , Sex Factors , Shock, Hemorrhagic/therapy
20.
Restor Neurol Neurosci ; 37(3): 245-263, 2019.
Article in English | MEDLINE | ID: mdl-31177251

ABSTRACT

BACKGROUND: Altered glutamatergic neurotransmission after traumatic brain injury (TBI) contributes to excitotoxic cell damage and death. Prevention or suppression of such changes is a desirable goal for treatment of TBI. Memantine (3,5-dimethyl-1-adamantanamine), an uncompetitive NMDA receptor antagonist with voltage-dependent open channel blocking kinetics, was reported to be neuroprotective in preclinical models of excitotoxicity, brain ischemia, and in TBI when administered prophylactically, immediately, or within minutes after injury. METHODS: The current study examined effects of memantine administered by single intraperitoneal injection to adult male rats at a more clinically relevant delay of one hour after moderate-severe controlled cortical impact (CCI) injury or sham surgery. Histopathology was assessed on days 1, 7, 21, and 90, vestibulomotor function (beam balance and beam walk) was assessed on days 1-5 and 71-75, and spatial memory (Morris water maze test, MWM) was assessed on days 14-21 and 83-90 after CCI injury or sham surgery. RESULTS: When administered at 10 mg/kg, but not 2.5 or 5 mg/kg, memantine preserved cortical tissue and reduced neuronal degeneration 1 day after injury, and attenuated loss of synaptophysin immunoreactivity in the hippocampus 7 days after injury. No effects of 10 mg/kg memantine were observed on histopathology at 21 and 90 days after CCI injury or sham surgery, or on vestibulomotor function and spatial memory acquisition assessed during any of the testing periods. However, 10 mg/kg memantine resulted in trends for improved search strategy in the MWM memory retention probe trial. CONCLUSIONS: Administration of memantine at a clinically-relevant delay after moderate-severe CCI injury has beneficial effects on acute outcomes, while more significant improvement on subacute and chronic outcomes may require repeated drug administration or its combination with another therapy.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Cerebral Cortex/drug effects , Cerebral Cortex/injuries , Excitatory Amino Acid Antagonists/pharmacology , Memantine/pharmacology , Motor Activity/drug effects , Nerve Degeneration/prevention & control , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Spatial Memory/drug effects , Vestibule, Labyrinth/drug effects , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Excitatory Amino Acid Antagonists/administration & dosage , Hippocampus/drug effects , Male , Memantine/administration & dosage , Rats , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...