Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582367

ABSTRACT

Chronic non-healing wounds negatively impact quality of life and are a significant financial drain on health systems. The risk of infection that exacerbates comorbidities in patients necessitates regular application of wound care. Understanding the mechanisms underlying impaired wound healing are therefore a key priority to inform effective new-generation treatments. In this study, we demonstrate that 14-3-3-mediated suppression of signaling through ROCK is a critical mechanism that inhibits the healing of diabetic wounds. Accordingly, pharmacological inhibition of 14-3-3 by topical application of the sphingo-mimetic drug RB-11 to diabetic wounds on a mouse model of type II diabetes accelerated wound closure more than 2-fold than vehicle control, phenocopying our previous observations in 14-3-3ζ-knockout mice. We also demonstrate that accelerated closure of the wounded epidermis by 14-3-3 inhibition causes enhanced signaling through the Rho-ROCK pathway and that the underlying cellular mechanism involves the efficient recruitment of dermal fibroblasts into the wound and the rapid production of extracellular matrix proteins to re-establish the injured dermis. Our observations that the 14-3-3/ROCK inhibitory axis characterizes impaired wound healing and that its suppression facilitates fibroblast recruitment and accelerated re-epithelialization suggest new possibilities for treating diabetic wounds by pharmacologically targeting this axis.

2.
Adv Exp Med Biol ; 1329: 399-417, 2021.
Article in English | MEDLINE | ID: mdl-34664249

ABSTRACT

It is becoming increasingly appreciated that biophysical influences on tissues are at least as important as biochemical influences in regulating normal development and homeostasis. Furthermore, diseases of aberrant tissue homeostasis such as cancers are driven by the abnormal biophysics of cancerous tissues. The mammary gland, a mechanoresponsive tissue, is exquisitely sensitive to changes in its mechanical microenvironment. Forces play an important role in normal mammary development, lactation, and involution, as well as in mammary neoplasia. As such the mechanical influences on normal tissue homeostasis and neoplasia are easily studied in this tissue. Here, we discuss the role of mechanical forces in these developmental and homeostatic processes and highlight insights gained from new findings in the field of mammary mechanobiology. We also discuss the potential for harnessing these insights into novel anticancer therapy approaches that halt tumor progression, with opportunities to revolutionize cancer care and outcomes for patients.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Animals , Female , Homeostasis , Humans , Lactation , Mechanotransduction, Cellular , Tumor Microenvironment
3.
Life (Basel) ; 11(10)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34685420

ABSTRACT

Metastatic breast cancer has one of the highest mortality rates among women in western society. Chemokine receptors CXCR4 and CCR7 have been shown to be linked to the metastatic spread of breast cancer, however, their precise function and underlying molecular pathways leading to the acquisition of the pro-metastatic properties remain poorly understood. We demonstrate here that the CXCR4 and CCR7 receptor ligands, CXCL12 and CCL19, cooperatively bind and selectively elicit synergistic signalling responses in invasive breast cancer cell lines as well as primary mammary human tumour cells. Furthermore, for the first time, we have documented the presence of CXCR4-CCR7 heterodimers in advanced primary mammary mouse and human tumours where number of CXCR4-CCR7 complexes directly correlate with the severity of the disease. The functional significance of the CXCR4-CCR7 association was also demonstrated when their forced heterodimerization led to the acquisition of invasive phenotype in non-metastatic breast cancer cells. Taken together, our data establish the CXCR4-CCR7 receptor complex as a new functional unit, which is responsible for the acquisition of breast cancer cell metastatic phenotype and which may serve as a novel biomarker for invasive mammary tumours.

5.
Nat Cell Biol ; 22(7): 882-895, 2020 07.
Article in English | MEDLINE | ID: mdl-32451439

ABSTRACT

It is well accepted that cancers co-opt the microenvironment for their growth. However, the molecular mechanisms that underlie cancer-microenvironment interactions are still poorly defined. Here, we show that Rho-associated kinase (ROCK) in the mammary tumour epithelium selectively actuates protein-kinase-R-like endoplasmic reticulum kinase (PERK), causing the recruitment and persistent education of tumour-promoting cancer-associated fibroblasts (CAFs), which are part of the cancer microenvironment. An analysis of tumours from patients and mice reveals that cysteine-rich with EGF-like domains 2 (CRELD2) is the paracrine factor that underlies PERK-mediated CAF education downstream of ROCK. We find that CRELD2 is regulated by PERK-regulated ATF4, and depleting CRELD2 suppressed tumour progression, demonstrating that the paracrine ROCK-PERK-ATF4-CRELD2 axis promotes the progression of breast cancer, with implications for cancer therapy.


Subject(s)
Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/pathology , Cell Adhesion Molecules/metabolism , Cellular Reprogramming , Extracellular Matrix Proteins/metabolism , eIF-2 Kinase/metabolism , rho-Associated Kinases/metabolism , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cell Adhesion Molecules/genetics , Cells, Cultured , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Extracellular Matrix Proteins/genetics , Female , Humans , Mice , Paracrine Communication , eIF-2 Kinase/genetics , rho-Associated Kinases/genetics
6.
Front Oncol ; 8: 431, 2018.
Article in English | MEDLINE | ID: mdl-30356678

ABSTRACT

The microenvironment encompasses all components of a tumor other than the cancer cells themselves. It is highly heterogenous, comprising a cellular component that includes immune cells, fibroblasts, adipocytes, and endothelial cells, and a non-cellular component, which is a meshwork of polymeric proteins and accessory molecules, termed the extracellular matrix (ECM). The ECM provides both a biochemical and biomechanical context within which cancer cells exist. Cancer progression is dependent on the ability of cancer cells to traverse the ECM barrier, access the circulation and establish distal metastases. Communication between cancer cells and the microenvironment is therefore an important aspect of tumor progression. Significant progress has been made in identifying the molecular mechanisms that enable cancer cells to subvert the immune component of the microenvironment to facilitate tumor growth and spread. While much less is known about how the tumor cells adapt to changes in the ECM nor indeed how they influence ECM structure and composition, the importance of the ECM to cancer progression is now well established. Plasticity refers to the ability of cancer cells to modify their physiological characteristics, permitting them to survive hostile microenvironments and resist therapy. Examples include the acquisition of stemness characteristics and the epithelial-mesenchymal and mesenchymal-epithelial transitions. There is emerging evidence that the biochemical and biomechanical properties of the ECM influence cancer cell plasticity and vice versa. Outstanding challenges for the field remain the identification of the cellular mechanisms by which cancer cells establish tumor-promoting ECM characteristics and delineating the key molecular mechanisms underlying ECM-induced cancer cell plasticity. Here we summarize the current state of understanding about the relationships between cancer cells and the main stromal cell types of the microenvironment that determine ECM characteristics, and the key molecular pathways that govern this three-way interaction to regulate cancer cell plasticity. We postulate that a comprehensive understanding of this dynamic system will be required to fully exploit opportunities for targeting the ECM regulators of cancer cell plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL
...