Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 6497, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764269

ABSTRACT

Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), an antifungal compound.


Subject(s)
Machine Learning , Antifungal Agents/pharmacology , Candida albicans/drug effects , Genome-Wide Association Study , Kinetochores/metabolism , Systems Biology/methods
2.
J Biol Chem ; 295(42): 14458-14472, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32796038

ABSTRACT

Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.


Subject(s)
Antifungal Agents/chemistry , Candida/metabolism , Fungal Proteins/metabolism , Antifungal Agents/metabolism , Binding Sites , Calcineurin/chemistry , Calcineurin/metabolism , Drug Design , Fungal Proteins/chemistry , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Molecular Dynamics Simulation , Mycoses/microbiology , Mycoses/pathology
3.
PLoS Biol ; 17(7): e3000358, 2019 07.
Article in English | MEDLINE | ID: mdl-31283755

ABSTRACT

Hsp90 is a conserved molecular chaperone that assists in the folding and function of diverse cellular regulators, with a profound impact on biology, disease, and evolution. As a central hub of protein interaction networks, Hsp90 engages with hundreds of protein-protein interactions within eukaryotic cells. These interactions include client proteins, which physically interact with Hsp90 and depend on the chaperone for stability or function, as well as co-chaperones and partner proteins that modulate chaperone function. Currently, there are no methods to accurately predict Hsp90 interactors and there has been considerable network rewiring over evolutionary time, necessitating experimental approaches to define the Hsp90 network in the species of interest. This is a pressing challenge for fungal pathogens, for which Hsp90 is a key regulator of stress tolerance, drug resistance, and virulence traits. To address this challenge, we applied a novel biochemical fractionation and quantitative proteomic approach to examine alterations to the proteome upon perturbation of Hsp90 in a leading human fungal pathogen, Candida albicans. In parallel, we performed affinity purification coupled to mass spectrometry to define physical interacting partners for Hsp90 and the Hsp90 co-chaperones and identified 164 Hsp90-interacting proteins, including 111 that are specific to the pathogen. We performed the first analysis of the Hsp90 interactome upon antifungal drug stress and demonstrated that Hsp90 stabilizes processing body (P-body) and stress granule proteins that contribute to drug tolerance. We also describe novel roles for Hsp90 in regulating posttranslational modification of the Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex and the formation of protein aggregates in response to thermal stress. This study provides a global view of the Hsp90 interactome in a fungal pathogen, demonstrates the dynamic role of Hsp90 in response to environmental perturbations, and highlights a novel connection between Hsp90 and the regulation of mRNA-associated protein granules.


Subject(s)
Candida albicans/metabolism , Fungal Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Proteomics/methods , Candida albicans/genetics , Candida albicans/pathogenicity , Candidiasis/microbiology , Fungal Proteins/genetics , Gene Regulatory Networks , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Humans , Microscopy, Confocal , Molecular Chaperones/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding , Proteome/genetics , Proteome/metabolism , Virulence/genetics
4.
PLoS Genet ; 15(1): e1007901, 2019 01.
Article in English | MEDLINE | ID: mdl-30615616

ABSTRACT

Morphogenetic transitions are prevalent in the fungal kingdom. For a leading human fungal pathogen, Candida albicans, the capacity to transition between yeast and filaments is key for virulence. For the model yeast Saccharomyces cerevisiae, filamentation enables nutrient acquisition. A recent functional genomic screen in S. cerevisiae identified Mfg1 as a regulator of morphogenesis that acts in complex with Flo8 and Mss11 to mediate transcriptional responses crucial for filamentation. In C. albicans, Mfg1 also interacts physically with Flo8 and Mss11 and is critical for filamentation in response to diverse cues, but the mechanisms through which it regulates morphogenesis remained elusive. Here, we explored the consequences of perturbation of Mfg1, Flo8, and Mss11 on C. albicans morphogenesis, and identified functional divergence of complex members. We observed that C. albicans Mss11 was dispensable for filamentation, and that overexpression of FLO8 caused constitutive filamentation even in the absence of Mfg1. Harnessing transcriptional profiling and chromatin immunoprecipitation coupled to microarray analysis, we identified divergence between transcriptional targets of Flo8 and Mfg1 in C. albicans. We also established that Flo8 and Mfg1 cooperatively bind to promoters of key regulators of filamentation, including TEC1, for which overexpression was sufficient to restore filamentation in the absence of Flo8 or Mfg1. To further explore the circuitry through which Mfg1 regulates morphogenesis, we employed a novel strategy to select for mutations that restore filamentation in the absence of Mfg1. Whole genome sequencing of filamentation-competent mutants revealed chromosome 6 amplification as a conserved adaptive mechanism. A key determinant of the chromosome 6 amplification is FLO8, as deletion of one allele blocked morphogenesis, and chromosome 6 was not amplified in evolved lineages for which FLO8 was re-located to a different chromosome. Thus, this work highlights rewiring of key morphogenetic regulators over evolutionary time and aneuploidy as an adaptive mechanism driving fungal morphogenesis.


Subject(s)
Candida albicans/genetics , Fungal Proteins/genetics , Nuclear Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Trans-Activators/genetics , Candida albicans/pathogenicity , Fungi/genetics , Fungi/pathogenicity , Gene Expression Regulation, Fungal , Humans , Hyphae/genetics , Hyphae/pathogenicity , Morphogenesis/genetics , Multiprotein Complexes/genetics , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics
5.
Nucleic Acids Res ; 47(2): 716-728, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30445476

ABSTRACT

Equal partitioning of the multi-copy yeast 2-micron plasmid requires association of plasmid proteins Rep1 and Rep2 with tandem repeats at the plasmid STB locus. To identify sequence elements required for these associations we generated synthetic versions of a 63-bp section of STB, encompassing one repeat. A single copy of this sequence was sufficient for Rep protein association in vivo, while two directly arrayed copies provided partitioning function to a plasmid lacking all other 2-micron sequences. Partitioning efficiency increased with increasing repeat number, reaching that conferred by the native STB repeat array. By altering sequences in synthetic repeats, we identified the TGCA component of a TGCATTTTT motif as critical for Rep protein recognition, with a second TGCA sequence in each repeat also contributing to association. Mutation of TGCATTTTT to TGTATTTT, as found in variant 2-micron STB repeats, also allowed Rep protein association, while mutation to TGCATTAAT impaired inheritance without abolishing Rep protein recognition, suggesting an alternate role for the T-tract. Our identification of sequence motifs required for Rep protein recognition provides the basis for understanding higher-order Rep protein arrangements at STB that enable the yeast 2-micron plasmid to be efficiently partitioned during host cell division.


Subject(s)
DNA, Fungal/chemistry , Plasmids/genetics , Saccharomyces cerevisiae/genetics , Fungal Proteins/metabolism , Genetic Loci , Mutation , Repetitive Sequences, Nucleic Acid
6.
Cell Rep ; 23(8): 2292-2298, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29791841

ABSTRACT

Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress.


Subject(s)
Candida albicans/genetics , Candida albicans/physiology , Echinocandins/pharmacology , Genomics , Stress, Physiological/genetics , Candida albicans/drug effects , Cell Wall/drug effects , Cell Wall/metabolism , Drug Resistance, Fungal/drug effects , Drug Resistance, Fungal/genetics , Fungal Proteins/metabolism , Genes, Fungal , Septins/metabolism , Stress, Physiological/drug effects
7.
mSphere ; 2(2)2017.
Article in English | MEDLINE | ID: mdl-28261668

ABSTRACT

Protein kinases are key regulators of signal transduction pathways that participate in diverse cellular processes. In fungal pathogens, kinases regulate signaling pathways that govern drug resistance, stress adaptation, and pathogenesis. The impact of kinases on the fungal regulatory circuitry has recently garnered considerable attention in the opportunistic fungal pathogen Candida albicans, which is a leading cause of human morbidity and mortality. Complex regulatory circuitry governs the C. albicans morphogenetic transition between yeast and filamentous growth, which is a key virulence trait. Here, we report that staurosporine, a promiscuous kinase inhibitor that abrogates fungal drug resistance, also influences C. albicans morphogenesis by inducing filamentation in the absence of any other inducing cue. We further establish that staurosporine exerts its effect via the adenylyl cyclase Cyr1 and the cyclic AMP (cAMP)-dependent protein kinase A (PKA). Strikingly, filamentation induced by staurosporine does not require the known upstream regulators of Cyr1, Ras1 or Pkc1, or effectors downstream of PKA, including Efg1. We further demonstrate that Cyr1 is capable of activating PKA to enable filamentation in response to staurosporine through a mechanism that does not require degradation of the transcriptional repressor Nrg1. We establish that staurosporine-induced filamentation is accompanied by a defect in septin ring formation, implicating cell cycle kinases as potential staurosporine targets underpinning this cellular response. Thus, we establish staurosporine as a chemical probe to elucidate the architecture of cellular signaling governing fungal morphogenesis and highlight the existence of novel circuitry through which the Cyr1 and PKA govern a key virulence trait. IMPORTANCE The impact of fungal pathogens on human health is devastating. One of the most pervasive fungal pathogens is Candida albicans, which kills ~40% of people suffering from bloodstream infections. Treatment of these infections is extremely difficult, as fungi are closely related to humans, and there are limited drugs that kill the fungus without host toxicity. The capacity of C. albicans to transition between yeast and filamentous forms is a key virulence trait. Thus, understanding the genetic pathways that regulate morphogenesis could provide novel therapeutic targets to treat C. albicans infections. Here, we establish the small molecule staurosporine as an inducer of filamentous growth. We unveil distinct regulatory circuitry required for staurosporine-induced filamentation that appears to be unique to this filament-inducing cue. Thus, this work highlights the fact that small molecules, such as staurosporine, can improve our understanding of the pathways required for key virulence programs, which may lead to the development of novel therapeutics.

8.
PLoS Genet ; 12(10): e1006350, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27695031

ABSTRACT

Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which metal chelation modulates morphogenetic circuitry and echinocandin resistance, and illuminate a novel facet to metal homeostasis at the host-pathogen interface, with broad therapeutic potential.


Subject(s)
Candida albicans/genetics , Candidiasis/drug therapy , Metals/metabolism , Mitogen-Activated Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/pathogenicity , Candidiasis/microbiology , Caspofungin , Cell Wall/drug effects , Chelating Agents/chemistry , Chelating Agents/pharmacology , Drug Resistance, Fungal/genetics , Echinocandins/pharmacology , Genome, Fungal , Humans , Lipopeptides/pharmacology , Metals/chemistry , Mice , Morphogenesis/drug effects , Morphogenesis/genetics , Mutation , Pentetic Acid/pharmacology , Signal Transduction
9.
PLoS Genet ; 12(6): e1006142, 2016 06.
Article in English | MEDLINE | ID: mdl-27341673

ABSTRACT

Candida albicans is a leading human fungal pathogen that causes life-threatening systemic infections. A key regulator of C. albicans stress response, drug resistance, morphogenesis, and virulence is the molecular chaperone Hsp90. Targeting Hsp90 provides a powerful strategy to treat fungal infections, however, the therapeutic utility of current inhibitors is compromised by toxicity due to inhibition of host Hsp90. To identify components of the Hsp90-dependent circuitry governing virulence and drug resistance that are sufficiently divergent for selective targeting in the pathogen, we pioneered chemical genomic profiling of the Hsp90 genetic network in C. albicans. Here, we screen mutant collections covering ~10% of the genome for hypersensitivity to Hsp90 inhibition in multiple environmental conditions. We identify 158 HSP90 chemical genetic interactors, most of which are important for growth only in specific environments. We discovered that the sterol C-22 desaturase gene ERG5 and the phosphatidylinositol-4-kinase (PI4K) gene STT4 are HSP90 genetic interactors under multiple conditions, suggesting a function upstream of Hsp90. By systematic analysis of the ergosterol biosynthetic cascade, we demonstrate that defects in ergosterol biosynthesis induce cellular stress that overwhelms Hsp90's functional capacity. By analysis of the phosphatidylinositol pathway, we demonstrate that there is a genetic interaction between the PI4K Stt4 and Hsp90. We also establish that Stt4 is required for normal actin polarization through regulation of Wal1, and suggest a model in which defects in actin remodeling induces stress that creates a cellular demand for Hsp90 that exceeds its functional capacity. Consistent with this model, actin inhibitors are synergistic with Hsp90 inhibitors. We highlight new connections between Hsp90 and virulence traits, demonstrating that Erg5 and Stt4 enable activation of macrophage pyroptosis. This work uncovers novel circuitry regulating Hsp90 functional capacity and new effectors governing drug resistance, morphogenesis and virulence, revealing new targets for antifungal drug development.


Subject(s)
1-Phosphatidylinositol 4-Kinase/genetics , Ergosterol/biosynthesis , Ergosterol/genetics , Gene Regulatory Networks/genetics , HSP90 Heat-Shock Proteins/genetics , Signal Transduction/genetics , Candida albicans/genetics , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Macrophages/metabolism , Morphogenesis/genetics , Phosphatidylinositols/genetics , Pyroptosis/genetics , Stress, Physiological/genetics , Virulence/genetics
10.
Cell Mol Life Sci ; 72(12): 2261-87, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25700837

ABSTRACT

Life-threatening invasive fungal infections are becoming increasingly common, at least in part due to the prevalence of medical interventions resulting in immunosuppression. Opportunistic fungal pathogens of humans exploit hosts that are immunocompromised, whether by immunosuppression or genetic predisposition, with infections originating from either commensal or environmental sources. Fungal pathogens are armed with an arsenal of traits that promote pathogenesis, including the ability to survive host physiological conditions and to switch between different morphological states. Despite the profound impact of fungal pathogens on human health worldwide, diagnostic strategies remain crude and treatment options are limited, with resistance to antifungal drugs on the rise. This review will focus on the global burden of fungal infections, the reservoirs of these pathogens, the traits of opportunistic yeast that lead to pathogenesis, host genetic susceptibilities, and the challenges that must be overcome to combat antifungal drug resistance and improve clinical outcome.


Subject(s)
Antifungal Agents/pharmacology , Drug Resistance, Fungal , Fungi/drug effects , Fungi/pathogenicity , Opportunistic Infections/drug therapy , Opportunistic Infections/microbiology , Virulence/drug effects , Animals , Humans
11.
Future Microbiol ; 9(4): 523-42, 2014.
Article in English | MEDLINE | ID: mdl-24810351

ABSTRACT

Fungal pathogens cause life-threatening infections in immunocompetent and immunocompromised individuals. Millions of people die each year due to fungal infections, comparable to the mortality attributable to tuberculosis or malaria. The three most prevalent fungal pathogens are Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Fungi are eukaryotes like their human host, making it challenging to identify fungal-specific therapeutics. There is a limited repertoire of antifungals in clinical use, and drug resistance and host toxicity compromise the clinical utility. The three classes of antifungals for treatment of invasive infections are the polyenes, azoles and echinocandins. Understanding mechanisms of resistance to these antifungals has been accelerated by global and targeted approaches, which have revealed that antifungal drug resistance is a complex phenomenon involving multiple mechanisms. Development of novel strategies to block the emergence of drug resistance and render resistant pathogens responsive to antifungals will be critical to treating life-threatening fungal infections.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Candida albicans/drug effects , Cryptococcus neoformans/drug effects , Drug Resistance, Fungal , Mycoses/microbiology , Aspergillus fumigatus/isolation & purification , Azoles/pharmacology , Candida albicans/isolation & purification , Cryptococcus neoformans/isolation & purification , Echinocandins/pharmacology , Humans , Polyenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...