Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35884990

ABSTRACT

Autism spectrum disorder (ASD) is often associated with debilitating sleep disturbances. While anecdotal evidence suggests the positive effect of cannabinoids, randomized studies are lacking. Here, we report the effects of cannabinoid treatment on the sleep of 150 children and adolescents with ASD, as part of a double-blind, placebo-controlled study that assessed the impact of cannabinoid treatment on behavior (NCT02956226). Participants were randomly assigned to one of the following three treatments: (1) whole-plant cannabis extract, containing cannabidiol (CBD) and Δ9-Tetrahydrocannabinol (THC) in a 20:1 ratio, (2) purified CBD and THC extract in the same ratio, and (3) an oral placebo. After 12 weeks of treatment (Period 1) and a 4-week washout period, participants crossed over to a predetermined, second 12-week treatment (Period 2). Sleep disturbances were assessed using the Children's Sleep-Habit Questionnaire (CSHQ). We found that the CBD-rich cannabinoid treatment was not superior to the placebo treatment in all aspects of sleep measured by the CSHQ, including bedtime resistance, sleep-onset delay, and sleep duration. Notably, regardless of the treatment (cannabinoids or placebo), improvements in the CSHQ total score were associated with improvements in the autistic core symptoms, as indicated by the Social Responsiveness Scale total scores (Period 1: r = 0.266, p = 0.008; Period 2: r = 0.309, p = 0.004). While this study failed to demonstrate that sleep improvements were higher with cannabinoids than they were with the placebo treatment, further studies are required.

2.
Mol Autism ; 12(1): 6, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536055

ABSTRACT

BACKGROUND: Endocannabinoid dysfunction in animal models of autism spectrum disorder (ASD) and accumulating, albeit anecdotal, evidence for efficacy in humans motivated this placebo-controlled double-blind comparison of two oral cannabinoid solutions in 150 participants (age 5-21 years) with ASD. METHODS: We tested (1) BOL-DP-O-01-W, a whole-plant cannabis extract containing cannabidiol and Δ9-tetrahydrocannabinol at a 20:1 ratio and (2) BOL-DP-O-01, purified cannabidiol and Δ9-tetrahydrocannabinol at the same ratio. Participants (N = 150) received either placebo or cannabinoids for 12-weeks (testing efficacy) followed by a 4-week washout and predetermined cross-over for another 12 weeks to further assess tolerability. Registered primary efficacy outcome measures were improvement in behavioral problems (differences between whole-plant extract and placebo) on the Home Situation Questionnaire-ASD (HSQ-ASD) and the Clinical Global Impression-Improvement scale with disruptive behavior anchor points (CGI-I). Secondary measures were Social Responsiveness Scale (SRS-2) and Autism Parenting Stress Index (APSI). RESULTS: Changes in Total Scores of HSQ-ASD (primary-outcome) and APSI (secondary-outcome) did not differ among groups. Disruptive behavior on the CGI-I (co-primary outcome) was either much or very much improved in 49% on whole-plant extract (n = 45) versus 21% on placebo (n = 47; p = 0.005). Median SRS Total Score (secondary-outcome) improved by 14.9 on whole-plant extract (n = 34) versus 3.6 points after placebo (n = 36); p = 0.009). There were no treatment-related serious adverse events. Common adverse events included somnolence and decreased appetite, reported for 28% and 25% on whole-plant extract, respectively (n = 95); 23% and 21% on pure-cannabinoids (n = 93), and 8% and 15% on placebo (n = 94). Limitations Lack of pharmacokinetic data and a wide range of ages and functional levels among participants warrant caution when interpreting the results. CONCLUSIONS: This interventional study provides evidence that BOL-DP-O-01-W and BOL-DP-O-01, administrated for 3 months, are well tolerated. Evidence for efficacy of these interventions are mixed and insufficient. Further testing of cannabinoids in ASD is recommended. Trial registration ClinicalTrials.gov: NCT02956226. Registered 06 November 2016, https://clinicaltrials.gov/ct2/show/NCT02956226.


Subject(s)
Autism Spectrum Disorder/drug therapy , Autistic Disorder/drug therapy , Cannabinoids/therapeutic use , Adolescent , Adult , Autism Spectrum Disorder/diagnosis , Autistic Disorder/diagnosis , Cannabinoids/administration & dosage , Cannabinoids/adverse effects , Child , Child, Preschool , Female , Humans , Male , Social Behavior , Treatment Outcome , Young Adult
3.
Oncoimmunology ; 8(9): e1624129, 2019.
Article in English | MEDLINE | ID: mdl-31428521

ABSTRACT

Neutrophils are a heterogeneous population of myeloid cells which may either promote or hinder tumor growth and progression. Anti-tumor neutrophils have the capacity to kill tumor cells in a contact-dependent manner. However, the molecular mechanisms underlying tumor cell recognition by neutrophils remained unexplored. Tumor cells were shown to express aberrant glycosylation patterns and neutrophils are equipped with receptors capable of recognizing such glycosylations. Accordingly, we hypothesized that the receptor for advanced glycation end products (RAGE) may facilitate neutrophil recognition of tumor cells. Indeed, RAGE decoy receptors and RAGE-specific blocking antibodies dramatically reduce tumor cell susceptibility to neutrophil cytotoxicity. Unexpectedly, we found that tumor cell RAGE rather than neutrophil RAGE is important for the killing process. We further identified neutrophil Cathepsin G as the neutrophil component interacting with tumor cell RAGE. Cathepsin G-deficient neutrophils show impaired ability to kill tumor cells, suggesting that RAGE-Cathepsin G interaction is required for neutrophil cytotoxicity. These data unravel new aspects of neutrophil anti-tumor activity and identify a novel role for RAGE and Cathepsin G in neutrophil-mediated cytotoxicity.

4.
Cancer Res ; 78(10): 2680-2690, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29490946

ABSTRACT

Neutrophils play a critical role in cancer, with both protumor and antitumor neutrophil subpopulations reported. The antitumor neutrophil subpopulation has the capacity to kill tumor cells and limit metastatic spread, yet not all tumor cells are equally susceptible to neutrophil cytotoxicity. Because cells that evade neutrophils have greater chances of forming metastases, we explored the mechanism neutrophils use to kill tumor cells. Neutrophil cytotoxicity was previously shown to be mediated by secretion of H2O2 We report here that neutrophil cytotoxicity is Ca2+ dependent and is mediated by TRPM2, a ubiquitously expressed H2O2-dependent Ca2+ channel. Perturbing TRPM2 expression limited tumor cell proliferation, leading to attenuated tumor growth. Concomitantly, cells expressing reduced levels of TRPM2 were protected from neutrophil cytotoxicity and seeded more efficiently in the premetastatic lung.Significance: These findings identify the mechanism utilized by neutrophils to kill disseminated tumor cells and to limit metastatic spread. Cancer Res; 78(10); 2680-90. ©2018 AACR.


Subject(s)
Breast Neoplasms/pathology , Calcium Channels/metabolism , Hydrogen Peroxide/metabolism , Neoplastic Cells, Circulating/immunology , Neutrophils/immunology , TRPM Cation Channels/metabolism , Animals , CRISPR-Cas Systems/genetics , Calcium/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Female , Humans , Mice , Mice, Inbred BALB C , Neoplastic Cells, Circulating/pathology , Neutrophils/metabolism , TRPM Cation Channels/genetics
5.
J Vis Exp ; (100): e52933, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26132785

ABSTRACT

Neutrophils, the most abundant of all white blood cells in the human circulation, play an important role in the host defense against invading microorganisms. In addition, neutrophils play a central role in the immune surveillance of tumor cells. They have the ability to recognize tumor cells and induce tumor cell death either through a cell contact-dependent mechanism involving hydrogen peroxide or through antibody-dependent cell-mediated cytotoxicity (ADCC). Neutrophils with anti-tumor activity can be isolated from peripheral blood of cancer patients and of tumor-bearing mice. These neutrophils are termed tumor-entrained neutrophils (TEN) to distinguish them from neutrophils of healthy subjects or naïve mice that show no significant tumor cytotoxic activity. Compared with other white blood cells, neutrophils show different buoyancy making it feasible to obtain a > 98% pure neutrophil population when subjected to a density gradient. However, in addition to the normal high-density neutrophil population (HDN), in cancer patients, in tumor-bearing mice, as well as under chronic inflammatory conditions, distinct low-density neutrophil populations (LDN) appear in the circulation. LDN co-purify with the mononuclear fraction and can be separated from mononuclear cells using either positive or negative selection strategies. Once the purity of the isolated neutrophils is determined by flow cytometry, they can be used for in vitro and in vivo functional assays. We describe techniques for monitoring the anti-tumor activity of neutrophils, their ability to migrate and to produce reactive oxygen species, as well as monitoring their phagocytic capacity ex vivo. We further describe techniques to label the neutrophils for in vivo tracking, and to determine their anti-metastatic capacity in vivo. All these techniques are essential for understanding how to obtain and characterize neutrophils with anti-tumor function.


Subject(s)
Neoplasms/immunology , Neutrophils/cytology , Neutrophils/immunology , Animals , Female , Humans , Immunologic Surveillance , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Neoplasms/pathology , Neutrophils/pathology
6.
Cell Rep ; 10(4): 562-73, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25620698

ABSTRACT

Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro- and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs) that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and immunosuppressive properties, characteristics that are in stark contrast to those of mature, high-density neutrophils (HDNs). LDNs consist of both immature myeloid-derived suppressor cells (MDSCs) and mature cells that are derived from HDNs in a TGF-ß-dependent mechanism. Our findings identify three distinct populations of circulating neutrophils and challenge the concept that mature neutrophils have limited plasticity. Furthermore, our findings provide a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.


Subject(s)
Neoplasms/pathology , Neutrophils/cytology , Animals , Cell Line , Cells, Cultured , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...