Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 917: 170363, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38308900

ABSTRACT

Living shorelines aim to enhance the resilience of coastlines to hazards while simultaneously delivering co-benefits such as carbon sequestration. Despite the potential ecological and socio-economic benefits of living shorelines over conventional engineered coastal protection structures, application is limited globally. Australia has a long and diverse coastline that provides prime opportunities for living shorelines using beaches and dunes, vegetation, and biogenic reefs, which may be either natural ('soft' approach) or with an engineered structural component ('hybrid' approach). Published scientific studies, however, have indicated limited use of living shorelines for coastal protection in Australia. In response, we combined a national survey and interviews of coastal practitioners and a grey and peer-reviewed literature search to (1) identify barriers to living shoreline implementation; and (2) create a database of living shoreline projects in Australia based on sources other than scientific literature. Projects included were those that had either a primary or secondary goal of protection of coastal assets from erosion and/or flooding. We identified 138 living shoreline projects in Australia through the means sampled starting in 1970; with the number of projects increasing through time particularly since 2000. Over half of the total projects (59 %) were considered to be successful according to their initial stated objective (i.e., reducing hazard risk) and 18 % of projects could not be assessed for their success based on the information available. Seventy percent of projects received formal or informal monitoring. Even in the absence of peer-reviewed support for living shoreline construction in Australia, we discovered local and regional increases in their use. This suggests that coastal practitioners are learning on-the-ground, however more generally it was stated that few examples of living shorelines are being made available, suggesting a barrier in information sharing among agencies at a broader scale. A database of living shoreline projects can increase knowledge among practitioners globally to develop best practice that informs technical guidelines for different approaches and helps focus attention on areas for further research.


Subject(s)
Carbon Sequestration , Floods , Australia
2.
PLoS One ; 18(1): e0279623, 2023.
Article in English | MEDLINE | ID: mdl-36652422

ABSTRACT

Flow velocities within coral reefs are greatly reduced relative to those at the water surface. The in-reef flow controls key processes that flush heat, cycle nutrients and transport sediment from the reef to adjacent beaches, all key considerations in assessments of reef resilience and restoration interventions. An analytical framework is proposed and tested with a suite of high-resolution numerical experiments. We demonstrate a single parameter that describes the total coral frontal area explains variation of horizontally averaged velocity within a reef canopy across morphologies, densities, and flow depths. With the integration of existing data of coral cover and geometry, this framework is a practical step towards the prediction of near-bed flows in diverse reef environments.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem
3.
Philos Trans R Soc Lond B Biol Sci ; 377(1854): 20210124, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35574851

ABSTRACT

Atoll societies have adapted their environments and social systems for thousands of years, but the rapid pace of climate change may bring conditions that exceed their adaptive capacities. There is growing interest in the use of 'nature-based solutions' to facilitate the continuation of dignified and meaningful lives on atolls through a changing climate. However, there remains insufficient evidence to conclude that these can make a significant contribution to adaptation on atolls, let alone to develop standards and guidelines for their implementation. A sustained programme of research to clarify the potential of nature-based solutions to support the habitability of atolls is therefore vital. In this paper, we provide a prospectus to guide this research programme: we explain the challenge climate change poses to atoll societies, discuss past and potential future applications of nature-based solutions and outline an agenda for transdisciplinary research to advance knowledge of the efficacy and feasibility of nature-based solutions to sustain the habitability of atolls. This article is part of the theme issue 'Nurturing resilient marine ecosystems'.


Subject(s)
Climate Change , Ecosystem , Acclimatization
4.
Sci Rep ; 9(1): 19693, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31873181

ABSTRACT

Seeds of Australian species of the seagrass genus Posidonia are covered by a membranous wing that we hypothesize plays a fundamental role in seed establishment in sandy, wave swept marine environments. Dimensions of the seed and membrane were quantified under electron microscopy and micro-CT scans, and used to model rotational, drag and lift forces. Seeds maintain contact with the seabed in the presence of strong turbulence: the larger the wing, the more stable the seed. Wing surface area increases from P. sinuosa < P. australis < P.coriacea correlating with their ability to establish in increasingly energetic environments. This unique seed trait in a marine angiosperm corresponds to adaptive pressures imposed on seagrass species along 7,500 km of Australia's coastline, from open, high energy coasts to calmer environments in bays and estuaries.


Subject(s)
Alismatales/physiology , Seeds/physiology , Adaptation, Physiological , Alismatales/anatomy & histology , Aquatic Organisms/physiology , Australia , Bays , Computer Simulation , Ecosystem , Estuaries , Hydrodynamics , Microscopy, Electron, Scanning , Models, Biological , Seeds/anatomy & histology , X-Ray Microtomography
5.
Sci Adv ; 4(2): eaao4350, 2018 02.
Article in English | MEDLINE | ID: mdl-29503866

ABSTRACT

Coral reefs are diverse ecosystems that support millions of people worldwide by providing coastal protection from waves. Climate change and human impacts are leading to degraded coral reefs and to rising sea levels, posing concerns for the protection of tropical coastal regions in the near future. We use a wave dissipation model calibrated with empirical wave data to calculate the future increase of back-reef wave height. We show that, in the near future, the structural complexity of coral reefs is more important than sea-level rise in determining the coastal protection provided by coral reefs from average waves. We also show that a significant increase in average wave heights could occur at present sea level if there is sustained degradation of benthic structural complexity. Our results highlight that maintaining the structural complexity of coral reefs is key to ensure coastal protection on tropical coastlines in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...