Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672933

ABSTRACT

Pre-cooked bone is a waste product generated during tuna processing and can serve as a potential source of biocalcium (BC). Generally, non-collagenous protein and fat must be removed properly from bone. A NaCl solution can be used to remove such proteins, while fish lipase can be used in a green process, instead of solvent, for fat removal. Thus, this study aimed to investigate the impact of NaCl pretreatment at different concentrations in combination with heat to eliminate non-collagenous proteins, and to implement fish lipase treatments at varying levels for fat removal, for BC production from pre-cooked tuna bone. Optimal NaCl pretreatment of bone was achieved when a 5% NaCl solution at 80 °C was used for 150 min. The lowest lipid content was obtained for bone defatted with crude lipase extract (CLE) at 0.30 Unit/g of bone powder for 2 h. BC powder from bone defatted with CLE (DF-BC) possessed greater contents of ash, calcium, and phosphorus and smaller particle sizes than the control BC powder. X-ray diffractograms suggested that both BC powders consisted of hydroxyapatite as a major compound, which had a crystallinity of 62.92-63.07%. An elemental profile confirmed the presence of organic and inorganic matter. Thus, BC powder could be produced from pre-cooked tuna bone using this 'green process'.

2.
Foods ; 12(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37509787

ABSTRACT

Asian sea bass scales discarded from the fish processing industry contain collagen and calcium. The production of biocalcium can increase their value. The effect of alkaline pretreatment on non-collagenous protein removal from scales was investigated. The alkaline pretreatment of scales was optimal when 2 M NaOH solution was used for 10 min. The impacts of heating processes of varying times on chemical compositions and characteristics of biocalcium (BC) powder from alkali-pretreated scales were also studied. A lower loss of hydroxyproline (HYP) and decreased hardness of scales were obtained when the scales were treated with a boiling process. BC powders from the scales subjected to boiling (B-BC) had higher yield and HYP content than BC powders using a high-pressure heating (HP-BC) process. An augmented heating time (10-30 min) lowered yield, HYP, moisture, and protein contents in BC powder regardless of the heating processes. HP-BC powder had higher ash, calcium, and phosphorus contents than B-BC powder. A whiter color and larger mean particle size were attained for the B-BC powders. X-ray diffractograms revealed that all BC powders had hydroxyapatite, which had a crystallinity of 53.60-66.54%, as a major component. FTIR spectra confirmed that all BC powders comprised proteins and inorganic matter. BC powder from scales with high yield and satisfactory characteristics could be used in calcium supplements.

SELECTION OF CITATIONS
SEARCH DETAIL
...