Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 7(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39009411

ABSTRACT

In humans, a neomorphic isocitrate dehydrogenase mutation (idh-1neo) causes increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a Caenorhabditis elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to ∆dhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen, we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. In addition, supplementation with alternate sources of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding of how this oncogenic mutation rewires cellular metabolism.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Isocitrate Dehydrogenase , Mutation , Vitamin B 12 , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Vitamin B 12/metabolism , Vitamin B 12/pharmacology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Phenotype , Glutarates/metabolism
2.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559246

ABSTRACT

The isocitrate dehydrogenase neomorphic mutation ( idh-1neo ) generates increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a C. elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to Δdhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. Additionally, supplementation with an alternate source of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding how this oncogenic mutation rewires cellular metabolism.

3.
Nature ; 623(7987): 625-632, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37880368

ABSTRACT

Identifying metabolic steps that are specifically required for the survival of cancer cells but are dispensable in normal cells remains a challenge1. Here we report a therapeutic vulnerability in a sugar nucleotide biosynthetic pathway that can be exploited in cancer cells with only a limited impact on normal cells. A systematic examination of conditionally essential metabolic enzymes revealed that UXS1, a Golgi enzyme that converts one sugar nucleotide (UDP-glucuronic acid, UDPGA) to another (UDP-xylose), is essential only in cells that express high levels of the enzyme immediately upstream of it, UGDH. This conditional relationship exists because UXS1 is required to prevent excess accumulation of UDPGA, which is produced by UGDH. UXS1 not only clears away UDPGA but also limits its production through negative feedback on UGDH. Excess UDPGA disrupts Golgi morphology and function, which impedes the trafficking of surface receptors such as EGFR to the plasma membrane and diminishes the signalling capacity of cells. UGDH expression is elevated in several cancers, including lung adenocarcinoma, and is further enhanced during chemoresistant selection. As a result, these cancer cells are selectively dependent on UXS1 for UDPGA detoxification, revealing a potential weakness in tumours with high levels of UGDH.


Subject(s)
Neoplasms , Uridine Diphosphate Glucuronic Acid , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction , Uridine Diphosphate Glucuronic Acid/biosynthesis , Uridine Diphosphate Glucuronic Acid/metabolism , Uridine Diphosphate Xylose/biosynthesis , Uridine Diphosphate Xylose/metabolism , Adenocarcinoma of Lung , Lung Neoplasms
4.
PLoS Biol ; 21(4): e3002057, 2023 04.
Article in English | MEDLINE | ID: mdl-37043428

ABSTRACT

In humans, mutations in D-2-hydroxyglutarate (D-2HG) dehydrogenase (D2HGDH) result in D-2HG accumulation, delayed development, seizures, and ataxia. While the mechanisms of 2HG-associated diseases have been studied extensively, the endogenous metabolism of D-2HG remains unclear in any organism. Here, we find that, in Caenorhabditis elegans, D-2HG is produced in the propionate shunt, which is transcriptionally activated when flux through the canonical, vitamin B12-dependent propionate breakdown pathway is perturbed. Loss of the D2HGDH ortholog, dhgd-1, results in embryonic lethality, mitochondrial defects, and the up-regulation of ketone body metabolism genes. Viability can be rescued by RNAi of hphd-1, which encodes the enzyme that produces D-2HG or by supplementing either vitamin B12 or the ketone bodies 3-hydroxybutyrate (3HB) and acetoacetate (AA). Altogether, our findings support a model in which C. elegans relies on ketone bodies for energy when vitamin B12 levels are low and in which a loss of dhgd-1 causes lethality by limiting ketone body production.


Subject(s)
Caenorhabditis elegans , Propionates , Humans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Propionates/metabolism , Vitamin B 12 , Ketones
5.
Elife ; 122023 02 03.
Article in English | MEDLINE | ID: mdl-36734518

ABSTRACT

Drug metabolism by the microbiome can influence anticancer treatment success. We previously suggested that chemotherapies with antimicrobial activity can select for adaptations in bacterial drug metabolism that can inadvertently influence the host's chemoresistance. We demonstrated that evolved resistance against fluoropyrimidine chemotherapy lowered its efficacy in worms feeding on drug-evolved bacteria (Rosener et al., 2020). Here, we examine a model system that captures local interactions that can occur in the tumor microenvironment. Gammaproteobacteria-colonizing pancreatic tumors can degrade the nucleoside-analog chemotherapy gemcitabine and, in doing so, can increase the tumor's chemoresistance. Using a genetic screen in Escherichia coli, we mapped all loss-of-function mutations conferring gemcitabine resistance. Surprisingly, we infer that one third of top resistance mutations increase or decrease bacterial drug breakdown and therefore can either lower or raise the gemcitabine load in the local environment. Experiments in three E. coli strains revealed that evolved adaptation converged to inactivation of the nucleoside permease NupC, an adaptation that increased the drug burden on co-cultured cancer cells. The two studies provide complementary insights on the potential impact of microbiome adaptation to chemotherapy by showing that bacteria-drug interactions can have local and systemic influence on drug activity.


Subject(s)
Gemcitabine , Pancreatic Neoplasms , Humans , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Escherichia coli/genetics , Antimetabolites, Antineoplastic/pharmacology , Drug Resistance, Neoplasm , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Tumor Microenvironment
6.
Contemp Oncol (Pozn) ; 26(3): 191-195, 2022.
Article in English | MEDLINE | ID: mdl-36381666

ABSTRACT

Introduction: Providing oncological care in conflict conditions is a difficult test for the country's health care system, especially if aggression is carried out in violation of the main international rules of conduct of war, the treaties of the Geneva Convention, when the aggressor attacks the civilian population. Material and methods: Having conducted an analysis of the style of military operations conducted by the aggressor and the peculiarities of the territories of Ukraine, the quality of providing oncological care before the conflict, the digital transformation of the state, the use of the application Diya by the population, and the functioning of the eHealth electronic medical telecommunication information system, we identified four zones of providing oncological care during martial law. Results: Each zone is defined and the amount of consultation and diagnostics with subsequent treatment assistance to the population is presented. Conclusions: Thanks to the practical implementation of the above characteristics, with a constantly functioning Internet network throughout Ukraine with a sufficiently high level of computer literacy of the population and available online means of communication, and in addition to the high level of organization of the Ukrainian and international volunteer service, it was possible to provide a qualified level of oncological care to the population during martial law.

7.
Nat Commun ; 13(1): 5595, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151093

ABSTRACT

Tamoxifen is a selective estrogen receptor (ER) modulator that is used to treat ER-positive breast cancer, but that at high doses kills both ER-positive and ER-negative breast cancer cells. We recapitulate this off-target effect in Caenorhabditis elegans, which does not have an ER ortholog. We find that different bacteria dramatically modulate tamoxifen toxicity in C. elegans, with a three-order of magnitude difference between animals fed Escherichia coli, Comamonas aquatica, and Bacillus subtilis. Remarkably, host fatty acid (FA) biosynthesis mitigates tamoxifen toxicity, and different bacteria provide the animal with different FAs, resulting in distinct FA profiles. Surprisingly these bacteria modulate tamoxifen toxicity by different death mechanisms, some of which are modulated by FA supplementation and others by antioxidants. Together, this work reveals a complex interplay between microbiota, FA metabolism and tamoxifen toxicity that may provide a blueprint for similar studies in more complex mammals.


Subject(s)
Receptors, Estrogen , Tamoxifen , Animals , Bacteria/metabolism , Caenorhabditis elegans/metabolism , Diet , Fatty Acids/metabolism , Mammals/metabolism , Receptors, Estrogen/metabolism , Selective Estrogen Receptor Modulators/therapeutic use , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
8.
Breast Cancer Res Treat ; 195(3): 453-459, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35930098

ABSTRACT

PURPOSE: The gene BRCA1 plays a key role in DNA repair in breast and ovarian cell lines and this is considered one of target tumor suppressor genes in same line of cancers. The 5382insC mutation is among the most frequently detected in patients (Eastern Europe) with triple-negative breast cancer (TNBC). In Ukraine, there is not enough awareness of necessity to test patients with TNBC for BRCA1 mutations. That is why this group of patients is not well-studied, even through is known the mutation may affect the course of disease. METHODS: The biological samples of 408 female patients were analyzed of the 5382insC mutation in BRCA1. We compared the frequency of the 5382insC mutation in BRCA1 gene observed in Ukraine with known frequencies in other countries. RESULTS: For patients with TNBC, BRCA1 mutations frequency was 11.3%, while in patients with luminal types of breast cancers, the frequency was 2.8%. Prevalence of 5382insC among TNBC patients reported in this study was not different from those in Tunisia, Poland, Russia, and Bulgaria, but was higher than in Australia and Germany. CONCLUSION: The BRCA1 c.5382 mutation rate was recorded for the first time for TNBC patients in a Ukrainian population. The results presented in this study underscore the importance of this genetic testing of mutations in patients with TNBC. Our study supports BRCA1/2 genetic testing for all women diagnosed with TNBC, regardless of the age of onset or family history of cancer and not only for women diagnosed with TNBC at <60y.o., as guidelines recommend.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Triple Negative Breast Neoplasms , BRCA1 Protein/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Female , Genes, BRCA1 , Genetic Predisposition to Disease , Genetic Testing , Humans , Mutation , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Triple Negative Breast Neoplasms/epidemiology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Ukraine/epidemiology
9.
Elife ; 112022 08 11.
Article in English | MEDLINE | ID: mdl-35950918

ABSTRACT

Reducing the microbial diversity in a type of fermented tea reveals the core metabolic interactions responsible for the drink's signature taste and characteristics.


Subject(s)
Fermentation
10.
Nature ; 607(7919): 571-577, 2022 07.
Article in English | MEDLINE | ID: mdl-35794472

ABSTRACT

Individuals can exhibit differences in metabolism that are caused by the interplay of genetic background, nutritional input, microbiota and other environmental factors1-4. It is difficult to connect differences in metabolism to genomic variation and derive underlying molecular mechanisms in humans, owing to differences in diet and lifestyle, among others. Here we use the nematode Caenorhabditis elegans as a model to study inter-individual variation in metabolism. By comparing three wild strains and the commonly used N2 laboratory strain, we find differences in the abundances of both known metabolites and those that have not to our knowledge been previously described. The latter metabolites include conjugates between 3-hydroxypropionate (3HP) and several amino acids (3HP-AAs), which are much higher in abundance in one of the wild strains. 3HP is an intermediate in the propionate shunt pathway, which is activated when flux through the canonical, vitamin-B12-dependent propionate breakdown pathway is perturbed5. We show that increased accumulation of 3HP-AAs is caused by genetic variation in HPHD-1, for which 3HP is a substrate. Our results suggest that the production of 3HP-AAs represents a 'shunt-within-a-shunt' pathway to accommodate a reduction-of-function allele in hphd-1. This study provides a step towards the development of metabolic network models that capture individual-specific differences of metabolism and more closely represent the diversity that is found in entire species.


Subject(s)
Caenorhabditis elegans , Metabolic Networks and Pathways , Animals , Humans , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Amino Acids/metabolism , Caenorhabditis elegans/classification , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Lactic Acid/analogs & derivatives , Lactic Acid/metabolism , Metabolic Networks and Pathways/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Animal , Propionates/metabolism , Vitamin B 12/metabolism
11.
Genetics ; 219(1)2021 08 26.
Article in English | MEDLINE | ID: mdl-34117752

ABSTRACT

In our group, we aim to understand metabolism in the nematode Caenorhabditis elegans and its relationships with gene expression, physiology, and the response to therapeutic drugs. Visualization of the metabolic pathways that comprise the metabolic network is extremely useful for interpreting a wide variety of experiments. Detailed annotated metabolic pathway maps for C. elegans are mostly limited to pan-organismal maps, many with incomplete or inaccurate pathway and enzyme annotations. Here, we present WormPaths, which is composed of two parts: (1) the careful manual annotation of metabolic genes into pathways, categories, and levels, and (2) 62 pathway maps that include metabolites, metabolite structures, genes, reactions, and pathway connections between maps. These maps are available on the WormFlux website. We show that WormPaths provides easy-to-navigate maps and that the different levels in WormPaths can be used for metabolic pathway enrichment analysis of transcriptomic data. In the future, we envision further developing these maps to be more interactive, analogous to road maps that are available on mobile devices.


Subject(s)
Caenorhabditis elegans , Animals
12.
Elife ; 92020 10 05.
Article in English | MEDLINE | ID: mdl-33016879

ABSTRACT

Vitamin B12 is an essential micronutrient that functions in two metabolic pathways: the canonical propionate breakdown pathway and the methionine/S-adenosylmethionine (Met/SAM) cycle. In Caenorhabditis elegans, low vitamin B12, or genetic perturbation of the canonical propionate breakdown pathway results in propionate accumulation and the transcriptional activation of a propionate shunt pathway. This propionate-dependent mechanism requires nhr-10 and is referred to as 'B12-mechanism-I'. Here, we report that vitamin B12 represses the expression of Met/SAM cycle genes by a propionate-independent mechanism we refer to as 'B12-mechanism-II'. This mechanism is activated by perturbations in the Met/SAM cycle, genetically or due to low dietary vitamin B12. B12-mechanism-II requires nhr-114 to activate Met/SAM cycle gene expression, the vitamin B12 transporter, pmp-5, and adjust influx and efflux of the cycle by activating msra-1 and repressing cbs-1, respectively. Taken together, Met/SAM cycle activity is sensed and transcriptionally adjusted to be in a tight metabolic regime.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Methionine/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , S-Adenosylmethionine/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
13.
bioRxiv ; 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33398287

ABSTRACT

In our group, we aim to understand metabolism in the nematode Caenorhabditis elegans and its relationships with gene expression, physiology and the response to therapeutic drugs. On March 15, 2020, a stay-at-home order was put into effect in the state of Massachusetts, USA, to flatten the curve of the spread of the novel SARS-CoV2 virus that causes COVID-19. For biomedical researchers in our state, this meant putting a hold on experiments for nine weeks until May 18, 2020. To keep the lab engaged and productive, and to enhance communication and collaboration, we embarked on an in-lab project that we all found important but that we never had the time for: the detailed annotation and drawing of C. elegans metabolic pathways. As a result, we present WormPaths, which is composed of two parts: 1) the careful manual annotation of metabolic genes into pathways, categories and levels, and 2) 66 pathway maps that include metabolites, metabolite structures, genes, reactions, and pathway connections between maps. These maps are available on our WormFlux website. We show that WormPaths provides easy-to-navigate maps and that the different levels in WormPaths can be used for metabolic pathway enrichment analysis of transcriptomic data. In the unfortunate event of additional lockdowns, we envision further developing these maps to be more interactive, with an analogy of road maps that are available on mobile devices.

14.
Mol Syst Biol ; 15(3): e8323, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858180

ABSTRACT

Most patients with advanced cancer eventually acquire resistance to targeted therapies, spurring extensive efforts to identify molecular events mediating therapy resistance. Many of these events involve synthetic rescue (SR) interactions, where the reduction in cancer cell viability caused by targeted gene inactivation is rescued by an adaptive alteration of another gene (the rescuer). Here, we perform a genome-wide in silico prediction of SR rescuer genes by analyzing tumor transcriptomics and survival data of 10,000 TCGA cancer patients. Predicted SR interactions are validated in new experimental screens. We show that SR interactions can successfully predict cancer patients' response and emerging resistance. Inhibiting predicted rescuer genes sensitizes resistant cancer cells to therapies synergistically, providing initial leads for developing combinatorial approaches to overcome resistance proactively. Finally, we show that the SR analysis of melanoma patients successfully identifies known mediators of resistance to immunotherapy and predicts novel rescuers.


Subject(s)
Computational Biology , Drug Resistance, Neoplasm/genetics , Drug Synergism , Melanoma/genetics , Female , Gene Expression Profiling , Humans , Immunotherapy , Male , Melanoma/drug therapy , Molecular Targeted Therapy , Synthetic Lethal Mutations
15.
Cell Rep ; 22(12): 3126-3133, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29562169

ABSTRACT

Vitamin B12 functions as a cofactor for methionine synthase to produce the anabolic methyl donor S-adenosylmethionine (SAM) and for methylmalonyl-CoA mutase to catabolize the short-chain fatty acid propionate. In the nematode Caenorhabditis elegans, maternally supplied vitamin B12 is required for the development of offspring. However, the mechanism for exporting vitamin B12 from the mother to the offspring is not yet known. Here, we use RNAi of more than 200 transporters with a vitamin B12-sensor transgene to identify the ABC transporter MRP-5 as a candidate vitamin B12 exporter. We show that the injection of vitamin B12 into the gonad of mrp-5 deficient mothers rescues embryonic lethality in the offspring. Altogether, our findings identify a maternal mechanism for the transit of an essential vitamin to support the development of the next generation.


Subject(s)
Caenorhabditis elegans/metabolism , Vitamin B 12/metabolism , Animals , Embryonic Development
16.
Cell Syst ; 5(4): 345-357.e6, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28964698

ABSTRACT

Many microorganisms live in communities and depend on metabolites secreted by fellow community members for survival. Yet our knowledge of interspecies metabolic dependencies is limited to few communities with small number of exchanged metabolites, and even less is known about cellular regulation facilitating metabolic exchange. Here we show how yeast enables growth of lactic acid bacteria through endogenous, multi-component, cross-feeding in a readily established community. In nitrogen-rich environments, Saccharomyces cerevisiae adjusts its metabolism by secreting a pool of metabolites, especially amino acids, and thereby enables survival of Lactobacillus plantarum and Lactococcus lactis. Quantity of the available nitrogen sources and the status of nitrogen catabolite repression pathways jointly modulate this niche creation. We demonstrate how nitrogen overflow by yeast benefits L. plantarum in grape juice, and contributes to emergence of mutualism with L. lactis in a medium with lactose. Our results illustrate how metabolic decisions of an individual species can benefit others.


Subject(s)
Lactic Acid/metabolism , Lactobacillales/metabolism , Nitrogen/metabolism , Symbiosis/physiology , Fermentation/physiology , Lactobacillus plantarum/metabolism , Lactococcus lactis/metabolism , Saccharomyces cerevisiae/metabolism , Yeast, Dried/metabolism
17.
FEMS Yeast Res ; 16(7)2016 11.
Article in English | MEDLINE | ID: mdl-27634775

ABSTRACT

The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype-metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype-phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype-environment-phenotype relationships.


Subject(s)
Metabolic Networks and Pathways/genetics , Microbial Interactions , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Adaptation, Biological
18.
Clin Lung Cancer ; 17(3): 169-76, 2016 05.
Article in English | MEDLINE | ID: mdl-27265742

ABSTRACT

BACKGROUND: Bavituximab is a phosphatidylserine-targeting antibody with a selective tumor, vascular-directed immune response. In this phase II trial the efficacy and safety of bavituximab combined with docetaxel for previously treated, advanced nonsquamous non-small-cell lung cancer were evaluated. PATIENTS AND METHODS: Patients were randomized 1:1:1 to receive docetaxel 75 mg/m(2) every 21 days for up to 6 cycles combined with weekly, blinded infusions of placebo, bavituximab 1 mg/kg, or bavituximab 3 mg/kg until disease progression or unacceptable toxicity. The primary end point was overall response rate (ORR), with a predefined end point of 26% in the bavituximab arms. After study unblinding, vial-coding discrepancies were discovered in the placebo and bavituximab 1 mg/kg groups. In exploratory analyses, data from these groups were pooled to form the control group and compared with the 3 mg/kg group. RESULTS: Efficacy end points in the bavituximab 3 mg/kg group (n = 41) and in the placebo/bavituximab 1 mg/kg group (n = 80), respectively, were as follows: ORR, 17.1% (95% confidence interval [CI], 5.6%-28.6%) and ORR, 11.3% (95% CI, 4.3%-18.2%); median progression-free survival 4.5 and 3.3 months (hazard ratio [HR], 0.74 [95% CI, 0.45-1.21]; P = .24); median overall survival 11.7 and 7.3 months (HR, 0.66 [95% CI, 0.40-1.10]; P = .11). Toxicities were manageable and similar between arms. CONCLUSION: The combination of bavituximab and docetaxel is well tolerated. Although no firm efficacy conclusions can be drawn and the trial did not meet the predefined primary end point, exploratory analyses suggest trends favoring the combination of bavituximab 3 mg/kg with docetaxel. This regimen is being evaluated in the ongoing, global, phase III SUNRISE trial.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Immunotherapy/methods , Lung Neoplasms/drug therapy , Taxoids/therapeutic use , Aged , Carcinoma, Non-Small-Cell Lung/mortality , Docetaxel , Double-Blind Method , Female , Humans , Lung Neoplasms/mortality , Male , Middle Aged , Proportional Hazards Models , Survival Analysis , Treatment Outcome
19.
Curr Opin Microbiol ; 27: 37-44, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26207681

ABSTRACT

Metabolic exchanges are ubiquitous in microbial communities. However, detecting metabolite cross-feedings is difficult due to their intrinsically dynamic nature and the complexity of communities. Thus, while exhaustive description of metabolic networks operating in natural systems is a task for the future, the battle of today is divided between detailed characterizations of small, reduced complexity microbial consortia, and focusing on particular metabolic aspects of natural ecosystems. Detecting metabolic interactions requires methodological blend able to capture species identity, dependencies and the nature of exchanged metabolites. Multiple combinations of diverse techniques, from metagenomics to imaging mass spectrometry, offer solutions to this challenge, each combination being tailored to the community at hand.


Subject(s)
Bacteria/metabolism , Metabolic Networks and Pathways , Microbial Consortia/physiology , Microbial Interactions , Archaea/metabolism , Ecosystem , Mass Spectrometry/methods , Metabolomics , Metagenomics
20.
Proc Natl Acad Sci U S A ; 112(20): 6449-54, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25941371

ABSTRACT

Microbial communities populate most environments on earth and play a critical role in ecology and human health. Their composition is thought to be largely shaped by interspecies competition for the available resources, but cooperative interactions, such as metabolite exchanges, have also been implicated in community assembly. The prevalence of metabolic interactions in microbial communities, however, has remained largely unknown. Here, we systematically survey, by using a genome-scale metabolic modeling approach, the extent of resource competition and metabolic exchanges in over 800 communities. We find that, despite marked resource competition at the level of whole assemblies, microbial communities harbor metabolically interdependent groups that recur across diverse habitats. By enumerating flux-balanced metabolic exchanges in these co-occurring subcommunities we also predict the likely exchanged metabolites, such as amino acids and sugars, that can promote group survival under nutritionally challenging conditions. Our results highlight metabolic dependencies as a major driver of species co-occurrence and hint at cooperative groups as recurring modules of microbial community architecture.


Subject(s)
Metabolic Networks and Pathways/physiology , Microbial Consortia/physiology , Microbial Interactions/physiology , Models, Biological , Symbiosis , Microbial Consortia/genetics , Phylogeny , Species Specificity , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL