Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Evol Appl ; 10(9): 881-889, 2017 10.
Article in English | MEDLINE | ID: mdl-29151879

ABSTRACT

Maize was introduced into opposite sides of Eurasia 500 years ago, in Western Europe and in Asia. This caused two host-shifts in the phytophagous genus Ostrinia; O. nubilalis (the European corn borer; ECB) and O. furnacalis (the Asian corn borer; ACB) are now major pests of maize worldwide. They originated independently from Dicot-feeding ancestors, similar to O. scapulalis (the Adzuki bean borer; ABB). Unlike other host-plants, maize is yearly harvested, and harvesting practices impose severe mortality on larvae found above the cut-off line. Positive geotaxis in the ECB has been proposed as a behavioural adaptation to harvesting practices, allowing larvae to move below the cut-off line and thus escape harvest mortality. Here, we test whether the same behavioural adaptation evolved independently in Europe and in Asia. We sampled eight genetically differentiated ECB, ACB and ABB populations in France and China and monitored geotaxis through the entire larval development in artificial stacks mimicking maize stems. We find that all ECB and ACB populations show a similar tendency to move down during the latest larval stages, a behaviour not observed in any European or Asian ABB population. The behaviour is robustly expressed regardless of larval density, development mode or environmental conditions. Our results indicate that maize introduction triggered parallel behavioural adaptations in Europe and Asia, harvest selection presumably being the main driver.

2.
J Hered ; 105(5): 642-55, 2014.
Article in English | MEDLINE | ID: mdl-25024271

ABSTRACT

Asian corn borer, Ostrinia furnacalis (Guenée), is a severe pest that infests cultivated maize in the major production regions of China. Populations show genotype-by-environment variation in voltinism, such that populations with a single generation (univoltine) are fixed in Northern China where growing seasons are short. Low genetic differentiation was found among samples from 33 collection sites across China and one site from North Korea (n=1673) using variation at 6 nuclear microsatellite loci (ENA corrected global FST=0.020; P value<0.05). Analysis of molecular variance indicated that geographic region, number of generations or voltinism accounted for <0.38% of the total genetic variation at nuclear loci and was corroborated by clustering of co-ancestries among genotypes using the program STRUCTURE. In contrast, a mitochondrial haplotype network identified 4 distinct clusters, where 70.5% of samples from univoltine populations were within a single group. Univoltine populations were also placed into a unique cluster using Population Graph and Principal component analyses, which showed significant differentiation with multivoltine populations (φST=0.400; P value<0.01). This study suggests that gene flow among O. furnacalis in China may be high among regions, with the exception of northeastern localities. Haplotype variation may be due to random genetic drift resulting from partial reproductive isolation between univoltine and multivoltine O. furnacalis populations. Such reproductive isolation might impact the potential spread of alleles that confer resistance to transgenic maize in China.


Subject(s)
Genetic Variation , Genetics, Population , Haplotypes , Lepidoptera/genetics , Zea mays , Alleles , Animals , China , Gene Flow , Genetic Drift , Genetic Loci , Genetic Markers , Microsatellite Repeats , Mitochondria/genetics , Multigene Family , Phylogeography , Plants, Genetically Modified
3.
Mol Ecol ; 23(2): 325-42, 2014 02.
Article in English | MEDLINE | ID: mdl-24289254

ABSTRACT

New agricultural pest species attacking introduced crops may evolve from pre-existing local herbivores by ecological speciation, thereby becoming a species by becoming a pest. We compare the evolutionary pathways by which two maize pests (the Asian and the European corn borers, ACB and ECB) in the genus Ostrinia (Lepidoptera, Crambidae) probably diverged from an ancestral species close to the current Adzuki bean borer (ABB). We typed larval Ostrinia populations collected on maize and dicotyledons across China and eastern Siberia, at microsatellite and mitochondrial loci. We found only two clusters: one on maize (as expected) and a single one on dicotyledons despite differences in male mid-tibia morphology, suggesting that all individuals from dicotyledons belonged to the ABB. We found evidence for migrants and hybrids on both host plant types. Hybrids suggest that field reproductive isolation is incomplete between ACB and ABB. Interestingly, a few individuals with an 'ABB-like' microsatellite profile collected on dicotyledons had 'ACB' mtDNA rather than 'ABB-like' mtDNA, whereas the reverse was never found on maize. This suggests asymmetrical gene flow directed from the ACB towards the ABB. Hybrids and backcrosses in all directions were obtained in no-choice tests. In laboratory conditions, they survived as well as parental strain individuals. In Xinjiang, we found ACB and ECB in sympatry, but no hybrids. Altogether, our results suggest that reproductive isolation between ACB and ABB is incomplete and mostly prezygotic. This points to ecological speciation as a possible evolutionary scenario, as previously found for ECB and ABB in Europe.


Subject(s)
Genes, Insect , Genetic Speciation , Moths/genetics , Animals , Bayes Theorem , Chimera , China , Cluster Analysis , Crosses, Genetic , DNA, Mitochondrial/genetics , Europe , Gene Flow , Genotype , Male , Microsatellite Repeats , Models, Genetic , Reproductive Isolation , Sequence Analysis, DNA , Zea mays
4.
Insect Sci ; 21(1): 93-102, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23956040

ABSTRACT

Two cornborer species, Ostrinia furnacalis (Lepidoptera: Crambidae) and O. nubilalis, are major corn pests in Asia and Europe, respectively. In both continents, the larval endoparasitoid Macrocentrus cingulum (Hymenoptera: Braconidae) develops on another, closely related stemborer, O. scapulalis, which feeds on mugwort and other dicotyledons. M. cingulum also emerges from O. furnacalis in Asia and O. nubilalis in North America, but not from O. nubilalis in Europe. We assessed the ability of three populations of each of the three Ostrinia species to encapsulate foreign bodies of a size similar to that of a M. cingulum egg. We conclude that variations in encapsulation ability alone cannot account for the differences observed in the field between parasite emergence rates in these different host species and geographic areas.


Subject(s)
Host-Parasite Interactions , Lepidoptera/parasitology , Wasps/physiology , Animals , Lepidoptera/classification , Lepidoptera/physiology
5.
PLoS One ; 8(7): e69211, 2013.
Article in English | MEDLINE | ID: mdl-23874914

ABSTRACT

The genus Ostrinia includes two allopatric maize pests across Eurasia, namely the European corn borer (ECB, O. nubilalis) and the Asian corn borer (ACB, O. furnacalis). A third species, the Adzuki bean borer (ABB, O. scapulalis), occurs in sympatry with both the ECB and the ACB. The ABB mostly feeds on native dicots, which probably correspond to the ancestral host plant type for the genus Ostrinia. This situation offers the opportunity to characterize the two presumably independent adaptations or preadaptations to maize that occurred in the ECB and ACB. In the present study, we aimed at deciphering the genetic architecture of these two adaptations to maize, a monocot host plant recently introduced into Eurasia. To this end, we performed a genome scan analysis based on 684 AFLP markers in 12 populations of ECB, ACB and ABB. We detected 2 outlier AFLP loci when comparing French populations of the ECB and ABB, and 9 outliers when comparing Chinese populations of the ACB and ABB. These outliers were different in both countries, and we found no evidence of linkage disequilibrium between any two of them. These results suggest that adaptation or preadaptation to maize relies on a different genetic architecture in the ECB and ACB. However, this conclusion must be considered in light of the constraints inherent to genome scan approaches and of the intricate evolution of adaptation and reproductive isolation in the Ostrinia spp. complex.


Subject(s)
Adaptation, Physiological/genetics , Host-Parasite Interactions/genetics , Moths/genetics , Zea mays/parasitology , Amplified Fragment Length Polymorphism Analysis , Animals , Bayes Theorem , China , Cluster Analysis , France , Genetic Loci/genetics , Genetic Markers , Geography , Population Dynamics , Reproductive Isolation , Species Specificity
6.
Mol Ecol Resour ; 12(3): 570-2, 2012 May.
Article in English | MEDLINE | ID: mdl-22448966

ABSTRACT

This article documents the addition of 473 microsatellite marker loci and 71 pairs of single-nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Barteria fistulosa, Bombus morio, Galaxias platei, Hematodinium perezi, Macrocentrus cingulum Brischke (a.k.a. M. abdominalis Fab., M. grandii Goidanich or M. gifuensis Ashmead), Micropogonias furnieri, Nerita melanotragus, Nilaparvata lugens Stål, Sciaenops ocellatus, Scomber scombrus, Spodoptera frugiperda and Turdus lherminieri. These loci were cross-tested on the following species: Barteria dewevrei, Barteria nigritana, Barteria solida, Cynoscion acoupa, Cynoscion jamaicensis, Cynoscion leiarchus, Cynoscion nebulosus, Cynoscion striatus, Cynoscion virescens, Macrodon ancylodon, Menticirrhus americanus, Nilaparvata muiri and Umbrina canosai. This article also documents the addition of 116 sequencing primer pairs for Dicentrarchus labrax.


Subject(s)
Biota , DNA Primers/genetics , Databases, Genetic , Ecology/methods , Microsatellite Repeats , Polymorphism, Single Nucleotide
7.
Genetics ; 176(4): 2343-55, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17603115

ABSTRACT

French populations of the European corn borer consist of two sympatric and genetically differentiated host races. As such, they are well suited to study processes that could be involved in sympatric speciation, but the initial conditions of host-race divergence need to be elucidated. Gene genealogies can provide insight into the processes involved in speciation. We used DNA sequences of four nuclear genes to (1) document the genetic structure of the two French host races previously delineated with allozyme markers, (2) find genes directly or indirectly involved in reproductive isolation between host races, and (3) estimate the time since divergence of the two taxa and see whether this estimate is compatible with this divergence being the result of a host shift onto maize after its introduction into Europe approximately 500 years ago. Gene genealogies revealed extensive shared polymorphism, but confirmed the previously observed genetic differentiation between the two host races. Significant departures from the predictions of neutral molecular evolution models were detected at three loci but were apparently unrelated to reproductive isolation between host races. Estimates of time since divergence between French host races varied from approximately 75,000 to approximately 150,000 years, suggesting that the two taxa diverged recently but probably long before the introduction of maize into Europe.


Subject(s)
Moths/genetics , Animals , Base Sequence , DNA/genetics , DNA Primers/genetics , Evolution, Molecular , Female , France , Genes, Insect , Genetics, Population , Male , Models, Genetic , Moths/classification , Moths/pathogenicity , Phylogeny , Polymorphism, Genetic , Time Factors , Zea mays/parasitology
8.
PLoS One ; 2(6): e555, 2007 Jun 20.
Article in English | MEDLINE | ID: mdl-17579726

ABSTRACT

BACKGROUND: Sex pheromone communication systems may be a major force driving moth speciation by causing behavioral reproductive isolation via assortative meeting of conspecific individuals. The 'E' and 'Z' pheromone races of the European corn borer (ECB) are a textbook example in this respect. 'Z' females produce and 'Z' males preferentially respond to a 'Z' pheromone blend, while the 'E' race communicates via an 'E' blend. Both races do not freely hybridize in nature and their populations are genetically differentiated. A straightforward explanation would be that their reproductive isolation is a mere consequence of "assortative meeting" resulting from their different pheromones specifically attracting males towards same-race females at long range. However, previous laboratory experiments and those performed here show that even when moths are paired in a small box - i.e., when the meeting between sexual partners is forced - inter-race couples still have a lower mating success than intra-race ones. Hence, either the difference in attractivity of E vs. Z pheromones for males of either race still holds at short distance or the reproductive isolation between E and Z moths may not only be favoured by assortative meeting, but must also result from an additional mechanism ensuring significant assortative mating at close range. Here, we test whether this close-range mechanism is linked to the E/Z female sex pheromone communication system. METHODOLOGY/PRINCIPAL FINDINGS: Using crosses and backcrosses of E and Z strains, we found no difference in mating success between full-sisters emitting different sex pheromones. Conversely, the mating success of females with identical pheromone types but different coefficients of relatedness to the two parental strains was significantly different, and was higher when their genetic background was closer to that of their male partner's pheromone race. CONCLUSIONS/SIGNIFICANCE: We conclude that the close-range mechanism ensuring assortative mating between the E and Z ECB pheromone races is unrelated to the difference in female sex pheromone. Although the nature of this mechanism remains elusive, our results show that it is expressed in females, acts at close range, segregates independently of the autosome carrying Pher and of both sex chromosomes, and is widely distributed since it occurs both in France and in the USA.


Subject(s)
Choice Behavior , Crosses, Genetic , Moths/physiology , Pheromones/physiology , Sexual Behavior, Animal , Animals , Female , France , Genetics, Population , Male , United States
9.
PLoS Biol ; 4(6): e181, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16719560

ABSTRACT

Over the past decade, the high-dose refuge (HDR) strategy, aimed at delaying the evolution of pest resistance to Bacillus thuringiensis (Bt) toxins produced by transgenic crops, became mandatory in the United States and is being discussed for Europe. However, precopulatory dispersal and the mating rate between resident and immigrant individuals, two features influencing the efficiency of this strategy, have seldom been quantified in pests targeted by these toxins. We combined mark-recapture and biogeochemical marking over three breeding seasons to quantify these features directly in natural populations of Ostrinia nubilalis, a major lepidopteran corn pest. At the local scale, resident females mated regardless of males having dispersed beforehand or not, as assumed in the HDR strategy. Accordingly, 0-67% of resident females mating before dispersal did so with resident males, this percentage depending on the local proportion of resident males (0% to 67.2%). However, resident males rarely mated with immigrant females (which mostly arrived mated), the fraction of females mating before dispersal was variable and sometimes substantial (4.8% to 56.8%), and there was no evidence for male premating dispersal being higher. Hence, O. nubilalis probably mates at a more restricted spatial scale than previously assumed, a feature that may decrease the efficiency of the HDR strategy under certain circumstances, depending for example on crop rotation practices.


Subject(s)
Insecticide Resistance , Lepidoptera/physiology , Sexual Behavior, Animal/physiology , Animals , Bacterial Toxins/genetics , Crops, Agricultural , Female , Male , Plants, Genetically Modified/genetics , Zea mays
10.
Science ; 308(5719): 258-60, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15821092

ABSTRACT

Although a growing body of work supports the plausibility of sympatric speciation in animals, the practical difficulties of directly quantifying reproductive isolation between diverging taxa remain an obstacle to analyzing this process. We used a combination of genetic and biogeochemical markers to produce a direct field estimate of assortative mating in phytophagous insect populations. We show that individuals of the same insect species, the European corn borer Ostrinia nubilalis, that develop on different host plants can display almost absolute reproductive isolation-the proportion of assortative mating was >95%-even in the absence of temporal or spatial isolation.


Subject(s)
Moths/physiology , Sexual Behavior, Animal , Animals , Biological Evolution , Feeding Behavior , Female , Male , Moths/classification , Moths/genetics , Zea mays
11.
Proc Biol Sci ; 271(1553): 2179-85, 2004 Oct 22.
Article in English | MEDLINE | ID: mdl-15475339

ABSTRACT

The European corn borer (ECB) consists of at least two, genetically differentiated host races: one feeding on maize, the other feeding on mugwort and hop. It is unclear to what extent individuals feeding on these, or other host plants, contribute to natural ECB populations. The mechanisms underlying the genetic differentiation between both races are not well understood; they may include sexual attraction via different pheromone blends (E or Z) and differences in the location of mating sites. We caught adult males with traps baited with the E or the Z blend at hop, maize, and 'mixed' sites. We determined their probable host race by allozyme-based genetic assignment, and the photosynthetic type of their host plant by stable carbon isotope analysis. Most individuals caught in Z traps had emerged from a C(4)-type plant and belonged to the maize race, whereas most individuals caught in E traps had emerged from C(3)-type plants and were but weakly differentiated from the hop-mugwort race, suggesting a strong, though not absolute, correspondence between host plant, host race and pherotype. We also found that although spatial segregation may contribute to genetic isolation between host races, moths of both host races may be present at a given location. Regarding the management of Bacillus thuringiensis (Bt) maize, our results indicate that, at least at the present study sites, it is unlikely that any wild or cultivated C(3)-type plant species could be a source of susceptible individuals that would mate randomly with Bt-resistant Z-C(4) moths emerging from Bt-maize fields.


Subject(s)
Adaptation, Physiological/genetics , Bacillus thuringiensis/chemistry , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Biological Evolution , Drug Resistance/genetics , Endotoxins/toxicity , Moths/microbiology , Adaptation, Physiological/drug effects , Animals , Bacillus thuringiensis Toxins , Carbon Isotopes , Drug Resistance/drug effects , Hemolysin Proteins , Humulus , Isoenzymes , Male , Moths/drug effects , Moths/genetics , Pest Control, Biological/methods , Plants, Genetically Modified , Selection, Genetic , Species Specificity , Zea mays
12.
Oecologia ; 136(2): 169-82, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12802678

ABSTRACT

Measurements of delta15N of consumers are usually higher than those of their diet. This general pattern is widely used to make inferences about trophic relationships in ecological studies, although the underlying mechanisms causing the pattern are poorly understood. However, there can be substantial variation in consumer-diet delta15N enrichment within this general pattern. We conducted an extensive literature review, which yielded 134 estimates from controlled studies of consumer-diet delta15N enrichment, to test the significance of several potential sources of variation by means of meta-analyses. We found patterns related to processes of nitrogen assimilation and excretion. There was a significant effect of the main biochemical form of nitrogenous waste: ammonotelic organisms show lower delta15N enrichment than ureotelic or uricotelic organisms. There were no significant differences between animals feeding on plant food, animal food, or manufactured mixtures, but detritivores yielded significantly lower estimates of enrichment. delta15N enrichment was found to increase significantly with the C:N ratio of the diet, suggesting that a nitrogen-poor diet can have an effect similar to that already documented for fasting organisms. There were also differences among taxonomic classes: molluscs and crustaceans generally yielded lower delta15N enrichment. The lower delta 15N enrichment might be related to the fact that molluscs and crustaceans excrete mainly ammonia, or to the fact that many were detritivores. Organisms inhabiting marine environments yielded significantly lower estimates of delta15N enrichment than organisms inhabiting terrestrial or freshwater environments, a pattern that was influenced by the number of marine, ammonotelic, crustaceans and molluscs. Overall, our analyses point to several important sources of variation in delta15N enrichment and suggest that the most important of them are the main biochemical form of nitrogen excretion and nutritional status. The variance of estimates of delta15N enrichment, as well as the fact that enrichment may be different in certain groups of organisms should be taken into account in statistical approaches for studying diet and trophic relationships.


Subject(s)
Diet , Food Chain , Models, Theoretical , Nitrogen/metabolism , Animals , Crustacea , Mollusca , Nitrogen/pharmacokinetics , Nitrogen Isotopes/metabolism , Nitrogen Isotopes/pharmacokinetics , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...