Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 261: 128107, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33113668

ABSTRACT

Although fluorescent lamps (FL) are extensively used worldwide, recycling rates in some countries are still low. If disposed of inappropriately and broken, FL can cause soil contamination. Hg toxicity in FL is extensively discussed in the literature; however, few studies address the other toxic metals present in the phosphorous powder of FL (PPFL). This paper presents a characterization of the environmental mobility with sequential extraction scheme (SES) of Cd, Cu, Hg, Mn, Ni, Pb, and Zn in PPFL, and modeling the potential risks to human health, in case of direct disposal in soils. An after thermal treatment waste was used for safety reasons. The SES method included five fractions, and the quantification was performed by flame atomic absorption spectrometry (FAAS). Human health risk assessment (HHRA) was conducted using RISC4® software. The PPFL showed the following mobility sequence: Cu (85%) > Ni (81%) > Hg (80%) > Zn (77%) > Cd (75%) > Mn (6%) > Pb (2%), which suggests that Cu, Ni, Zn, and Cd, besides Hg, could be of environmental concern in terms of availability. HHRA showed the potential hazard of Cd, for both children and adults, in the hypothetical scenario of vegetable ingestion, considering vegetables grown in soils contaminated with FL waste. The thermal treatment does not completely remove Hg from the matrix, and the residual Hg still poses a risk to children. These results show that Hg and Cd can be hazardous to humans and reinforce the importance of the correct disposal and treatment of PPFL.


Subject(s)
Cadmium/toxicity , Electrical Equipment and Supplies , Environmental Monitoring/methods , Mercury/toxicity , Soil Pollutants/toxicity , Solid Waste , Adult , Cadmium/analysis , Child , Humans , Mercury/analysis , Phosphorus/chemistry , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis , Vegetables/chemistry
2.
J Sep Sci ; 39(8): 1454-60, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26914691

ABSTRACT

A new method was developed for the determination of ammonium ion, monomethylamine and monoethylamine in saline waters by ion chromatography. Steam distillation was used to eliminate matrix interferences. Variables such as distillation time, concentration of sodium hydroxide solution and analyte mass were optimized by using a full two-level factorial (2(3) ) design. The influence of steam distillation on the analytical curves prepared in different matrices was also investigated. Limits of detection of 0.03, 0.05 and 0.05 mg/L were obtained for ammoniumion, monomethylamine and monoethylamine, respectively. Saline water samples from the Brazilian oil industry, containing sodium and potassium concentrations between 2.0-5.2% w/v and 96-928 mg/L, respectively, were analyzed. Satisfactory recoveries (90-105%) of the analytes were obtained for all spiked samples, and the precision was ≤ 7% (n = 3). The proposed method is adequate for analyzing saline waters containing sodium to ammoniumion, monomethylamine and monoethylamine concentration ratios up to 28 000:1 and potassium to ammonium, monomethylamine and monoethylamine concentration ratios up to 12 000:1.

3.
J AOAC Int ; 95(2): 560-6, 2012.
Article in English | MEDLINE | ID: mdl-22649945

ABSTRACT

Chemical analysts use analytical blanks in their analyses, but seldom is this source of uncertainty evaluated. Generally, there is great confusion. Although the numerical value of the blank, in some situations, can be negligible, its source of uncertainty cannot be. This article discusses the uncertainty contribution of the analytical blank using a numerical example of the copper content in waters by flame atomic absorption spectrometry. The results indicate that the uncertainties of the analytical blank can contribute up to 50% when the blank sample is considered in this analysis, confirming its high impact. This effect can be primarily observed where the analyte concentration approaches the lower range of the analytical curve. Even so, the blank is not always computed. Therefore, the relevance of the analytical blank can be confirmed by uncertainty evaluation.


Subject(s)
Copper/chemistry , Spectrophotometry, Atomic/methods , Uncertainty , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...