Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 233(3): 1520-1534, 2022 02.
Article in English | MEDLINE | ID: mdl-34797916

ABSTRACT

Tree-ring anatomy, microdensity and isotope records provide valuable intra-annual information. However, extracting signals at that scale is challenged by the complexity of xylogenesis, where two major processes - cell enlargement and wall thickening - occur at different times and rates. We characterized the space-for-time association in the tree rings of three conifer species by examining the duration, overlapping, inter-tree synchronicity and interannual stability during cell enlargement and wall thickening across regular tree-ring sectors (portions of equal tangential width). The number of cells and cell differentiation rates determined the duration of sector formation, which augmented more rapidly throughout the ring for wall thickening than for enlargement. Increasing the number of sectors above c. 15 had a limited effect on improving time resolution because consecutive sector formation overlapped greatly in time, especially in narrow rings and during wall thickening. Increasing the number of sectors also resulted in lower synchronicity and stability of intermediate-sector enlargement, whereas all sectors showed high synchronicity and stability during wall thickening. Increasing the number of sectors had a stronger effect on enhancing time-series resolution for enlargement- than for wall-thickening-related traits, which would nevertheless produce more reliable intra-annual chronologies as a result of the more similar calendars across trees and years in wall thickening.


Subject(s)
Picea , Tracheophyta , Cell Differentiation , Picea/anatomy & histology , Wood/anatomy & histology , Xylem
2.
PLoS One ; 15(6): e0234583, 2020.
Article in English | MEDLINE | ID: mdl-32520978

ABSTRACT

The current distribution area of the two sympatric oaks Quercus petraea and Q. robur covers most of temperate Western Europe. Depending on their geographic location, populations of these trees are exposed to different climate constraints, to which they are adapted. Comparing the performances of trees from contrasting populations provides the insight into their expected resilience to future climate change required for forest management. In this study, the descendants of 24 Q. petraea and two Q. robur provenances selected from sites throughout Europe were grown for 20 years in three common gardens with contrasting climates. The 2420 sampled trees allowed the assessments of the relationship between radial growth and climate. An analysis of 15-year chronologies of ring widths, with different combinations of climate variables, revealed different response patterns between provenances and between common gardens. As expected, provenances originating from sites with wet summers displayed the strongest responses to summer drought, particularly in the driest common garden. All provenances displayed positive significant relationships between the temperature of the previous winter and radial growth when grown in the common garden experiencing the mildest winter temperatures. Only eastern provenances from continental cold climates also clearly expressed this limitation of growth by cold winter temperatures in the other two common gardens. However, ecological distance, calculated on the basis of differences in climate between the site of origin and the common garden, was not clearly related to the radial growth responses of the provenances. This suggests that the gradient of genetic variability among the selected provenances was not strictly structured according to climate gradients. Based on these results, we provide guidelines for forest managers for the assisted migration of Quercus petraea and Q. robur provenances.


Subject(s)
Climate Change , Quercus/physiology , Stress, Physiological , Trees/growth & development , Droughts , Europe , Gardens , Seasons , Temperature
3.
Sci Total Environ ; 712: 136148, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31945532

ABSTRACT

Through the variations in their dimension, density, anatomy or isotopes composition, tree rings have provided invaluable proxies to evaluate past changes in the environment. Whereas long-term records of changes in soil fertility are particularly desired for forest ecosystem studies, the use of the chemical composition of tree rings as potential marker is still controversial. Dendrochemistry has sometimes been considered as a promising approach to study past changes in soil chemistry, whereas some authors stated that element translocations in the wood preclude any possibility of reliable retrospective monitoring. Here, we aimed at testing whether the wood elemental content of fertilized oaks (Quercus petraea) differed from control trees >30 years after a NPKCaMg fertilization and, if so, if the date of fertilization could be retrieved from the ring analysis. The contents in N, Mg, P, K, Ca and Mn were measured for each of the 43 sampled trees and in every ring of the 58-year long chronology with a non-destructive method coupling a Wavelength Dispersive Spectroscope (WDS) with a Scanning Electron Microscope (SEM). The results showed significantly higher contents in Ca and lower contents in Mn in fertilized compared to control trees. However, there was no difference in elemental content between the rings of the fertilized trees built in the 20 years before and those built after fertilization. Thus, whereas the effect of fertilization on increasing ring width was dramatic, immediate and relatively short-lasting, the elemental composition of the entire ring sequence was impacted, precluding the dating of the event. These results question the possibility to reconstruct long-term changes in soil fertility based on dendrochemistry.


Subject(s)
Quercus , Forests , Retrospective Studies , Soil
4.
Glob Chang Biol ; 20(3): 979-91, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23996917

ABSTRACT

The relative contribution of gross primary production and ecosystem respiration to seasonal changes in the net carbon flux of tropical forests remains poorly quantified by both modelling and field studies. We use data assimilation to combine nine ecological time series from an eastern Amazonian forest, with mass balance constraints from an ecosystem carbon cycle model. The resulting analysis quantifies, with uncertainty estimates, the seasonal changes in the net carbon flux of a tropical rainforest which experiences a pronounced dry season. We show that the carbon accumulation in this forest was four times greater in the dry season than in the wet season and that this was accompanied by a 5% increase in the carbon use efficiency. This seasonal response was caused by a dry season increase in gross primary productivity, in response to radiation and a similar magnitude decrease in heterotrophic respiration, in response to drying soils. The analysis also predicts increased carbon allocation to leaves and wood in the wet season, and greater allocation to fine roots in the dry season. This study demonstrates implementation of seasonal variations in parameters better enables models to simulate observed patterns in data. In particular, we highlight the necessity to simulate the seasonal patterns of heterotrophic respiration to accurately simulate the net carbon flux seasonal tropical forest.


Subject(s)
Carbon Cycle , Models, Theoretical , Trees , Seasons , Soil/chemistry , Tropical Climate , Water/analysis
5.
Tree Physiol ; 32(6): 667-79, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22021011

ABSTRACT

Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO(2) efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (δ(13)C) of stem wood α-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P(W)) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P(W), but to a lesser extent compared with K fertilization. Neither K nor Na affected δ(13)C of stem wood α-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P(W) resulted from drastic changes in carbon allocation.


Subject(s)
Carbon/metabolism , Eucalyptus/growth & development , Fertilizers , Potassium/metabolism , Sodium/metabolism , Biomass , Carbon Isotopes/metabolism , Cellulose/metabolism , Eucalyptus/metabolism , Forestry , Plant Leaves/growth & development , Plant Stomata/physiology , Wood/metabolism
6.
Plant Cell Environ ; 34(8): 1332-44, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21486302

ABSTRACT

We assessed the extent of recent environmental changes on leaf morphological (stomatal density, stomatal surface, leaf mass per unit area) and physiological traits (carbon isotope composition, δ(13)C(leaf) , and discrimination, Δ(13)C(leaf) , oxygen isotope composition, δ(18)O(leaf) ) of two tropical rainforest species (Dicorynia guianensis; Humiria balsamifera) that are abundant in the Guiana shield (Northern Amazonia). Leaf samples were collected in different international herbariums to cover a 200 year time-period (1790-2004) and the whole Guiana shield. Using models describing carbon and oxygen isotope fractionations during photosynthesis, different scenarios of change in intercellular CO(2) concentrations inside the leaf (C(i)), stomatal conductance (g), and photosynthesis (A) were tested in order to understand leaf physiological response to increasing air CO(2) concentrations (C(a)). Our results confirmed that both species displayed physiological response to changing C(a) . For both species, we observed a decrease of about 1.7‰ in δ(13)C(leaf) since 1950, without significant change in Δ(13)C(leaf) and leaf morphological traits. Furthermore, there was no clear change in δ(18)O(leaf) for Humiria over this period. Our simulation approach revealed that an increase in A, rather than a decrease in g, explained the observed trends for these tropical rainforest species, allowing them to maintain a constant ratio of C(i)/C(a) .


Subject(s)
Carbon Dioxide , Plant Leaves/physiology , Plant Stomata/physiology , Trees/physiology , Carbon Isotopes , Cellulose/chemistry , Computer Simulation , French Guiana , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Oxygen Isotopes , Photosynthesis/physiology , Plant Transpiration/physiology , Tropical Climate
7.
Tree Physiol ; 22(6): 413-22, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11960766

ABSTRACT

Seedlings of two sympatric oak species, Quercus robur L. and Quercus petraea (Matt.) Liebl., were grown in common garden conditions to test for potential interspecific differences in intrinsic water-use efficiency (WUE). Intrinsic water-use efficiency was estimated based on carbon isotope composition of shoots (delta13C) and on gas exchange measurements (ratio of net CO2 assimilation rate to stomatal conductance (A/g(sw))). In addition, genotype x environment interactions were tested by subjecting the seedlings to four irradiance treatments (8, 18, 48 and 100% of incident solar irradiance) imposed by neutral shading nets, and, in the 100% irradiance treatment, two watering regimes. In all treatments, initial growth of Q. robur was faster than that of Q. petraea. In both species, there was a tight correlation between delta13C and A/g(sw). Intrinsic water-use efficiency increased with increasing irradiance (almost doubling from 8 to 100% irradiance), and this effect paralleled the increase in A with increasing irradiance. In full sun, WUE of Q. petraea seedlings was 10-15% higher than in Q. robur seedlings, with the difference attributable to a difference between the species in g(sw). The interspecific difference in WUE was maintained during drought, despite the appreciable increase in WUE and decrease in growth imposed by drought. No interspecific differences in WUE were observed at low irradiances, suggesting a strong genotype x environment interaction for WUE. These findings confirm the existence of interspecific genetic differences in WUE, but also show that there is large intraspecific variability and plasticity in WUE. The initially greater height and biomass increments in Q. robur seedlings illustrate the ability of this species to out-compete Q. petraea in the early stages of forest regeneration. For adult trees growing in closed canopies, the high WUE of Q. petraea may contribute significantly to its survival during dry years, whereas the low WUE of Q. robur may account for the frequently observed declines in adult trees of this species following drought.


Subject(s)
Quercus/physiology , Seedlings/physiology , Trees/physiology , Biomass , Carbon Dioxide/physiology , Carbon Isotopes , Environment , Genotype , Light , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Transpiration/physiology , Quercus/growth & development , Seedlings/growth & development , Trees/growth & development , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL