Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Trop Med Hyg ; 110(3): 444-447, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38350139

ABSTRACT

Anopheles darlingi is the primary malaria vector in the Amazon region and is highly susceptible to both Plasmodium vivax and Plasmodium falciparum parasites. Although anopheline mosquitoes may develop melanotic encapsulation in response to Plasmodium parasites, there is no record of An. darlingi exhibiting a melanization response to P. vivax, the main malaria parasite in the Americas. Here, we report the occurrence of P. vivax sporozoite melanization in An. darlingi mosquitoes.


Subject(s)
Anopheles , Malaria, Vivax , Malaria , Animals , Humans , Plasmodium vivax , Anopheles/parasitology , Sporozoites , Mosquito Vectors/parasitology , Salivary Glands
2.
Parasitol Res ; 123(1): 15, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060049

ABSTRACT

Circadian behavioral patterns in mosquitoes can be observed through their locomotor activity, which includes fundamental behaviors such as foraging, mating, and oviposition. These habits, which are fundamental to the life cycle of Anopheles mosquitoes, are closely related to pathogen transmission to humans. While rhythmic cycles of locomotor activity have been described in Anopheles species, no studies have been conducted on Anopheles darlingi species, the main malaria vector in the Amazon region. The aim of this study was to investigate how insemination status, blood meal, and Plasmodium vivax infection affect the locomotor activity of An. darlingi. The experiments were performed with 3- to 10-day-old An. darlingi females, which had been fed with 15% honey solution. These mosquitoes were obtained from the Malaria Vector Production and Infection Platform (PIVEM)/FIOCRUZ-RO. The experimental groups were divided into four categories: virgin vs. inseminated, unfed virgin vs. blood-fed virgin, unfed inseminated vs. blood-fed inseminated, and infected blood vs. uninfected blood. Locomotor activity was monitored using the Flybox equipment, capturing images that were subsequently converted into video to measure the insect activity, using PySoLo software. The periodicity and rhythmicity of mosquito locomotor activity were analyzed using MatLab® software. The locomotor activity of An. darlingi females showed a nocturnal and bimodal pattern under LD conditions. When comparing the insemination states and blood meal, there was a reduction in the locomotor activity in inseminated and blood-fed females. However, the P. vivax+ infection did not increase locomotor activity of An. darlingi species.


Subject(s)
Anopheles , Malaria, Vivax , Malaria , Humans , Animals , Female , Plasmodium vivax , Mosquito Vectors , Insemination , Feeding Behavior
SELECTION OF CITATIONS
SEARCH DETAIL