Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Evol ; 10(1): vead076, 2024.
Article in English | MEDLINE | ID: mdl-38361826

ABSTRACT

Autonomously replicating alphasatellites (family Alphasatellitidae) are frequently associated with plant single-stranded (ss)DNA viruses of the families Geminiviridae, Metaxyviridae, and Nanoviridae. Alphasatellites encode a single replication-initiator protein (Rep) similar to Rep proteins of helper viruses and depend on helper viruses for encapsidation, movement, and transmission. Costs versus benefits of alphasatellite-helper virus association are poorly understood. Our surveys in Southeast Asia (SEA) for wild and cultivated banana plants infected with banana bunchy top virus (BBTV, Nanoviridae) and Illumina sequencing reconstruction of their viromes revealed, in addition to a six-component BBTV genome, one to three distinct alphasatellites present in sixteen of twenty-four BBTV-infected plants. Comparative nucleotide and Rep protein sequence analyses classified these alphasatellites into four distinct species: two known species falling into the genus Muscarsatellite (subfamily Petromoalphasatellitinae) previously identified in SEA and two novel species falling into the tentative genus Banaphisatellite (subfamily Nanoalphasatellitinae) so far containing a single species recently identified in Africa. The banaphisatellites were found to be most related to members of the genus Fabenesatellite of subfamily Nanoalphasatellitinae and the genus Gosmusatellite of subfamily Geminialphasatellitinae, both infecting dicots. This suggests a dicot origin of banaphisatellites that got independently associated with distinct strains of monocot-infecting BBTV in Africa and SEA. Analysis of conserved sequence motifs in the common regions driving replication and gene expression of alphasatellites and BBTV strains revealed both differences and similarities, pointing at their ongoing co-evolution. An impact of alphasatellites on BBTV infection and evasion of RNA interference-based antiviral defences was evaluated by measuring relative abundance of BBTV genome components and alphasatellites and by profiling BBTV- and alphasatellite-derived small interfering RNAs. Taken together, our findings shed new light on the provenance of alphasatellites, their co-evolution with helper viruses, and potential mutual benefits of their association.

2.
PLoS Pathog ; 20(1): e1011941, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38215155

ABSTRACT

Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) causes severe disease of cultivated tomatoes. Geminiviruses replicate circular single-stranded genomic DNA via rolling-circle and recombination-dependent mechanisms, frequently generating recombinants in mixed infections. Circular double-stranded intermediates of replication also serve as templates for Pol II bidirectional transcription. IS76, a recombinant derivative of TYLCV with a short sequence in the bidirectional promoter/origin-of-replication region acquired from a related begomovirus, outcompetes TYLCV in mixed infection and breaks disease resistance in tomato Ty-1 cultivars. Ty-1 encodes a γ-clade RNA-dependent RNA polymerase (RDRγ) implicated in Dicer-like (DCL)-mediated biogenesis of small interfering (si)RNAs directing gene silencing. Here, we profiled transcriptome and small RNAome of Ty-1 resistant and control susceptible plants infected with TYLCV, IS76 or their combination at early and late infection stages. We found that RDRγ boosts production rates of 21, 22 and 24 nt siRNAs from entire genomes of both viruses and modulates DCL activities in favour of 22 and 24 nt siRNAs. Compared to parental TYLCV, IS76 undergoes faster transition to the infection stage favouring rightward transcription of silencing suppressor and coat protein genes, thereby evading RDRγ activity and facilitating its DNA accumulation in both single and mixed infections. In coinfected Ty-1 plants, IS76 efficiently competes for host replication and transcription machineries, thereby impairing TYLCV replication and transcription and forcing its elimination associated with further increased siRNA production. RDRγ is constitutively overexpressed in Ty-1 plants, which correlates with begomovirus resistance, while siRNA-generating DCLs (DCL2b/d, DCL3, DCL4) and genes implicated in siRNA amplification (α-clade RDR1) and function (Argonaute2) are upregulated to similar levels in TYLCV- and IS76-infected susceptible plants. Collectively, IS76 recombination facilitates replication and promotes expression of silencing suppressor and coat proteins, which allows the recombinant virus to evade the negative impact of RDRγ-boosted production of viral siRNAs directing transcriptional and posttranscriptional silencing.


Subject(s)
Begomovirus , Coinfection , Solanum lycopersicum , Coinfection/genetics , Begomovirus/genetics , Transcriptome , RNA, Small Interfering/genetics , Genes, Viral , RNA, Double-Stranded , DNA , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL