Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(51): 20645-50, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297902

ABSTRACT

Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.


Subject(s)
Adaptation, Physiological/physiology , Boidae , Evolution, Molecular , Gene Expression Regulation/physiology , Genome/physiology , Transcription, Genetic/physiology , Animals , Boidae/genetics , Boidae/metabolism , Cell Cycle/physiology , Humans , Organ Specificity/physiology
2.
RNA ; 9(12): 1437-45, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14624000

ABSTRACT

Oligonucleotide directed misfolding of RNA (ODMiR) uses short oligonucleotides to inhibit RNA function by exploiting the ability of RNA to fold into different structures with similar free energies. It is shown that the 2'-O-methyl oligonucleotide, m(CAGCCUACCCGG), can trap Escherichia coli RNase P RNA (M1 RNA) in a nonfunctional structure in a transcription mixture containing RNase P protein (C5 protein). At about 200 nM, the 12-mer thus inhibits 50% of pre-tRNA processing by RNase P. Roughly 10-fold more 12-mer is required to inhibit RNase P containing full-length, renatured RNase P RNA. Diethyl pyrocarbonate modification in the presence of 12-mer reveals increased modification of sites in and interacting with P4, suggesting a structural rearrangement of a large pseudoknot important for catalytic activity. Thus, the ODMiR method can be applied to RNAs even when folding is facilitated by a cognate protein.


Subject(s)
Escherichia coli/enzymology , Nucleic Acid Conformation , Oligonucleotides/chemistry , RNA, Bacterial/chemistry , Ribonuclease P/antagonists & inhibitors , Base Sequence , Catalysis , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL