Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 62(24): 3554-3567, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38061393

ABSTRACT

Electron bifurcation is an energy-conservation mechanism in which a single enzyme couples an exergonic reaction with an endergonic one. Heterotetrameric EtfABCX drives the reduction of low-potential ferredoxin (E°' ∼ -450 mV) by oxidation of the midpotential NADH (E°' = -320 mV) by simultaneously coupling the reaction to reduction of the high-potential menaquinone (E°' = -74 mV). Electron bifurcation occurs at the NADH-oxidizing bifurcating-flavin adenine dinucleotide (BF-FAD) in EtfA, which has extremely crossed half-potentials and passes the first, high-potential electron to an electron-transferring FAD and via two iron-sulfur clusters eventually to menaquinone. The low-potential electron on the BF-FAD semiquinone simultaneously reduces ferredoxin. We have expressed the genes encodingThermotoga maritimaEtfABCX in E. coli and purified the EtfABCX holoenzyme and the EtfAB subcomplex. The bifurcation activity of EtfABCX was demonstrated by using electron paramagnetic resonance (EPR) to follow accumulation of reduced ferredoxin. To elucidate structural factors that impart the bifurcating ability, EPR and NADH titrations monitored by visible spectroscopy and dye-linked enzyme assays have been employed to characterize four conserved residues, R38, P239, and V242 in EtfA and R140 in EtfB, in the immediate vicinity of the BF-FAD. The R38, P239, and V242 variants showed diminished but still significant bifurcation activity. Despite still being partially reduced by NADH, the R140 variant had no bifurcation activity, and electron transfer to its two [4Fe-4S] clusters was prevented. The role of R140 is discussed in terms of the bifurcation mechanism in EtfABCX and in the other three families of bifurcating enzymes.


Subject(s)
Ferredoxins , Thermotoga maritima , Ferredoxins/metabolism , NAD/metabolism , Electrons , Flavin-Adenine Dinucleotide/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Vitamin K 2 , Bacteria/metabolism , Electron Transport , Oxidation-Reduction , Archaea/metabolism
2.
Chemosphere ; 255: 126951, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32417512

ABSTRACT

The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.


Subject(s)
Geologic Sediments/chemistry , Uranium/chemistry , Water Pollutants, Radioactive/chemistry , Bacteria , Groundwater/chemistry , Nitrates/analysis , Organic Chemicals , Sulfates/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis
3.
Metab Eng Commun ; 7: e00073, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30009131

ABSTRACT

Caldicellulosiruptor bescii is an extremely thermophilic cellulolytic bacterium with great potential for consolidated bioprocessing of renewable plant biomass. Since it does not natively produce ethanol, metabolic engineering is required to create strains with this capability. Previous efforts involved the heterologous expression of the gene encoding a bifunctional alcohol dehydrogenase, AdhE, which uses NADH as the electron donor to reduce acetyl-CoA to ethanol. Acetyl-CoA produced from sugar oxidation also generates reduced ferredoxin but there is no known pathway for the transfer of electrons from reduced ferredoxin to NAD in C. bescii. Herein, we engineered a strain of C. bescii using a more stable genetic background than previously reported and heterologously-expressed adhE from Clostridium thermocellum (which grows optimally (Topt) at 60 °C) with and without co-expression of the membrane-bound Rnf complex from Thermoanaerobacter sp. X514 (Topt 60 °C). Rnf is an energy-conserving, reduced ferredoxin NAD oxidoreductase encoded by six genes (rnfCDGEAB). It was produced in a catalytically active form in C. bescii that utilized the largest DNA construct to be expressed in this organism. The new genetic lineage containing AdhE resulted in increased ethanol production compared to previous reports. Ethanol production was further enhanced by the presence of Rnf, which also resulted in decreased production of pyruvate, acetoin and an uncharacterized compound as unwanted side-products. Using crystalline cellulose as the growth substrate for the Rnf-containing strain, 75 mM (3.5 g/L) ethanol was produced at 60 °C, which is 5-fold higher than that reported previously. This underlines the importance of redox balancing and paves the way for achieving even higher ethanol titers in C. bescii.

4.
Nat Commun ; 8: 16110, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28726794

ABSTRACT

Iron-sulfur clusters are ubiquitous in biology and function in electron transfer and catalysis. They are assembled from iron and cysteine sulfur on protein scaffolds. Iron is typically stored as iron oxyhydroxide, ferrihydrite, encapsulated in 12 nm shells of ferritin, which buffers cellular iron availability. Here we have characterized IssA, a protein that stores iron and sulfur as thioferrate, an inorganic anionic polymer previously unknown in biology. IssA forms nanoparticles reaching 300 nm in diameter and is the largest natural metalloprotein complex known. It is a member of a widely distributed protein family that includes nitrogenase maturation factors, NifB and NifX. IssA nanoparticles are visible by electron microscopy as electron-dense bodies in the cytoplasm. Purified nanoparticles appear to be generated from 20 nm units containing ∼6,400 Fe atoms and ∼170 IssA monomers. In support of roles in both iron-sulfur storage and cluster biosynthesis, IssA reconstitutes the [4Fe-4S] cluster in ferredoxin in vitro.


Subject(s)
Bacterial Proteins/ultrastructure , Iron-Sulfur Proteins/ultrastructure , Nanoparticles/ultrastructure , Pyrococcus furiosus/ultrastructure , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ferredoxins/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Microscopy, Electron , Nanoparticles/chemistry , Pyrococcus furiosus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...