Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(39): 36136-36151, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810650

ABSTRACT

Single activation of peroxymonosulfate (PMS) in a homogeneous system is sometimes insufficient for producing reactive oxygen species (ROS) for water treatment applications. In this work, manganese spinel ferrite and graphitic carbon nitride (MnFe2O4/g-C3N4; MnF) were successfully used as an activator for PMS under visible light irradiation to remove the four-most-detected-hormone-contaminated water under different environmental conditions. The incorporation of g-C3N4 in the nanocomposites led to material enhancements, including increased crystallinity, reduced particle agglomeration, amplified magnetism, improved recyclability, and increased active surface area, thereby facilitating the PMS activation and electron transfer processes. The dominant active radical species included singlet oxygen (1O2) and superoxide anions (O2•-), which were more susceptible to the estrogen molecular structure than testosterone due to the higher electron-rich moieties. The self-scavenging effect occurred at high PMS concentrations, whereas elevated constituent ion concentrations can be both inhibitors and promoters due to the generation of secondary radicals. The MnF/PMS/vis system degradation byproducts and possible pathways of 17ß-estradiol and 17α-methyltestosterone were identified. The impact of hormone-treated water on Oryza sativa L. seed germination, shoot length, and root length was found to be lower than that of untreated water. However, the viability of both ELT3 and Sertoli TM4 cells was affected only at higher water compositions. Our results confirmed that MnF and visible light could be potential PMS activators due to their superior degradation performance and ability to produce safer treated water.

2.
Sci Total Environ ; 892: 164652, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37295514

ABSTRACT

A challenge to successfully implementing an injection-based remedial treatment in aquifers is to ensure that the oxidative reaction is efficient and lasts long enough to contact the contaminated plume. Our objective was to determine the efficacy of zinc ferrite nanocomposites (ZnFe2O4) and sulfur-containing reductants (SCR) (i.e., dithionite; DTN and bisulfite; BS) to co-activate persulfate (S2O82-; PS) and treat herbicide-contaminated water. We also evaluated the ecotoxicity of the treated water. While both SCRs delivered excellent PS activation in a 1:0.4 ratio (PS:SCR), the reaction was relatively short-lived. By including ZnFe2O4 in the PS/BS or PS/DTN activations, herbicide degradation rates dramatically increased by factors of 2.5 to 11.3. This was due to the SO4- and OH reactive radical species that formed. Radical scavenging experiments and ZnFe2O4 XPS spectra results revealed that SO4- was the dominant reactive species that originated from S(IV)/PS activation in solution and from the Fe(II)/PS activation that occurred on the ZnFe2O4 surface. Based on liquid chromatography mass spectrometry (LC-MS), atrazine and alachlor degradation pathways are proposed that involve both dehydration and hydroxylation. In 1-D column experiments, five different treatment scenarios were run using 14C-labeled and unlabeled atrazine, and 3H2O to quantify changes in breakthrough curves. Our results confirmed that ZnFe2O4 successfully prolonged the PS oxidative treatment despite the SCR being completely dissociated. Toxicity testing showed treated 14C-atrazine was more biodegradable than the parent compound in soil microcosms. Post-treatment water (25 %, v/v) also had less impact on both Zea Mays L. and Vigna radiata L. seedling growth, but more impact on root anatomies, while ≤4 % of the treated water started to exert cytotoxicity (<80 % viability) on ELT3 cell lines. Overall, the findings confirm that ZnFe2O4/SCR/PS reaction is efficient and relatively longer lasting in treating herbicide-contaminated groundwater.


Subject(s)
Ferric Compounds , Groundwater , Herbicides , Reducing Agents , Sulfur Compounds , Water Pollutants, Chemical , Water Purification , Zinc Compounds , Herbicides/chemistry , Herbicides/metabolism , Groundwater/chemistry , Zinc Compounds/chemistry , Sulfur Compounds/chemistry , Reducing Agents/chemistry , Ferric Compounds/chemistry , Atrazine/chemistry , Atrazine/metabolism , Seedlings/drug effects , Seedlings/growth & development , Cell Line , Environmental Restoration and Remediation , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Nanostructures/chemistry , Water Purification/methods , Cell Survival/drug effects
3.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296763

ABSTRACT

The use of parabens in personal care products can result in their leakage into water bodies, especially in public swimming pools with insufficient water treatment. We found that ferrite-based nanomaterials could catalytically enhance ozone efficiency through the production of reactive oxygen species. Our objective was to develop a catalytic ozonation system using ternary nanocomposites that could minimize the ozone supply while ensuring the treated water was acceptable for disposal into the environment. A ternary CuFe2O4/CuO/Fe2O3 nanocomposite (CF) delivered excellent degradation performance in catalytic ozonation systems for butylparaben (BP). By calcining with melamine, we obtained the CF/g-C3N4 (CFM) nanocomposite, which had excellent magnetic separation properties with slightly lower degradation efficiency than CF, due to possible self-agglomeration that reduced its electron capture ability. The presence of other constituent ions in synthetic wastewater and actual discharge water resulted in varying degradation rates due to the formation of secondary active radicals. 1O2 and •O2− were the main dominant reactive species for BP degradation, which originated from the O3 adsorption that occurs on the CF≡Cu(I)−OH and CF≡Fe(III)−OH surface, and from the reaction with •OH from indirect ozonation. Up to 50% of O3-treated water resulted in >80% ELT3 cell viability, the presence of well-adhered cells, and no effect on the young tip of Ceratophyllum demersum L. Overall, our results demonstrated that both materials could be potential catalysts for ozonation because of their excellent degrading performance and, consequently, their non-toxic by-products.

4.
Vet World ; 14(12): 3132-3137, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35153403

ABSTRACT

BACKGROUND AND AIM: Apigenin (API) is an estrogenic compound found in many plants. Sertoli cells reside in the testis and are a key target of environmental toxicants. This study aimed to examine the cytotoxicity, especially oxidative stress of API in mouse Sertoli TM4 cells. MATERIALS AND METHODS: Mouse Sertoli TM4 cells were treated with 50 and 100 µM API for 48 h. Cell viability, lactate dehydrogenase (LDH) activities, glutathione reductase (GR) activities, production of reactive oxygen species (ROS), and malondialdehyde (MDA) levels were evaluated using various assays. RESULTS: Treatment with API at both 50 and 100 µM decreased viability and GR activity but increased LDH activity, ROS production, and MDA levels in mouse Sertoli TM4 cells. CONCLUSION: Exposure to API induced oxidative stress in mouse Sertoli TM4 cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...