Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Haematologica ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572553

ABSTRACT

Resistance to glucocorticoids (GCs), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-of-function experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GCresistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GCs against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.

2.
Stem Cell Res Ther ; 14(1): 247, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37705079

ABSTRACT

AIMS: Dissecting complex interactions among transcription factors (TFs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are central for understanding heart development and function. Although computational approaches and platforms have been described to infer relationships among regulatory factors and genes, current approaches do not adequately account for how highly diverse, interacting regulators that include noncoding RNAs (ncRNAs) control cardiac gene expression dynamics over time. METHODS: To overcome this limitation, we devised an integrated framework, cardiac gene regulatory modeling (CGRM) that integrates LogicTRN and regulatory component analysis bioinformatics modeling platforms to infer complex regulatory mechanisms. We then used CGRM to identify and compare the TF-ncRNA gene regulatory networks that govern early- and late-stage cardiomyocytes (CMs) generated by in vitro differentiation of human pluripotent stem cells (hPSC) and ventricular and atrial CMs isolated during in vivo human cardiac development. RESULTS: Comparisons of in vitro versus in vivo derived CMs revealed conserved regulatory networks among TFs and ncRNAs in early cells that significantly diverged in late staged cells. We report that cardiac genes ("heart targets") expressed in early-stage hPSC-CMs are primarily regulated by MESP1, miR-1, miR-23, lncRNAs NEAT1 and MALAT1, while GATA6, HAND2, miR-200c, NEAT1 and MALAT1 are critical for late hPSC-CMs. The inferred TF-miRNA-lncRNA networks regulating heart development and contraction were similar among early-stage CMs, among individual hPSC-CM datasets and between in vitro and in vivo samples. However, genes related to apoptosis, cell cycle and proliferation, and transmembrane transport showed a high degree of divergence between in vitro and in vivo derived late-stage CMs. Overall, late-, but not early-stage CMs diverged greatly in the expression of "heart target" transcripts and their regulatory mechanisms. CONCLUSIONS: In conclusion, we find that hPSC-CMs are regulated in a cell autonomous manner during early development that diverges significantly as a function of time when compared to in vivo derived CMs. These findings demonstrate the feasibility of using CGRM to reveal dynamic and complex transcriptional and posttranscriptional regulatory interactions that underlie cell directed versus environment-dependent CM development. These results with in vitro versus in vivo derived CMs thus establish this approach for detailed analyses of heart disease and for the analysis of cell regulatory systems in other biomedical fields.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Transcription Factors/genetics , MicroRNAs/genetics , Myocytes, Cardiac , Heart Ventricles
3.
Stem Cell Res Ther ; 14(1): 167, 2023 06 25.
Article in English | MEDLINE | ID: mdl-37357314

ABSTRACT

BACKGROUND: Acute graft-versus-host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Transplantation of immunosuppressive human mesenchymal stromal cells (hMSCs) can protect against aGvHD post-HSCT; however, their efficacy is limited by poor engraftment and survival. Moreover, infused MSCs can be damaged by activated complement, yet strategies to minimise complement injury of hMSCs and improve their survival are limited. METHODS: Human MSCs were derived from bone marrow (BM), adipose tissue (AT) and umbilical cord (UC). In vitro immunomodulatory potential was determined by co-culture experiments between hMSCs and immune cells implicated in aGvHD disease progression. BM-, AT- and UC-hMSCs were tested for their abilities to protect aGvHD in a mouse model of this disease. Survival and clinical symptoms were monitored, and target tissues of aGvHD were examined by histopathology and qPCR. Transplanted cell survival was evaluated by cell tracing and by qPCR. The transcriptome of BM-, AT- and UC-hMSCs was profiled by RNA-sequencing. Focused experiments were performed to compare the expression of complement inhibitors and the abilities of hMSCs to resist complement lysis. RESULTS: Human MSCs derived from three tissues divergently protected against aGvHD in vivo. AT-hMSCs preferentially suppressed complement in vitro and in vivo, resisted complement lysis and survived better after transplantation when compared to BM- and UC-hMSCs. AT-hMSCs also prolonged survival and improved the symptoms and pathological features of aGvHD. We found that complement-decay accelerating factor (CD55), an inhibitor of complement, is elevated in AT-hMSCs and contributed to reduced complement activation. We further report that atorvastatin and erlotinib could upregulate CD55 and suppress complement in all three types of hMSCs. CONCLUSION: CD55, by suppressing complement, contributes to the improved protection of AT-hMSCs against aGvHD. The use of AT-hMSCs or the upregulation of CD55 by small molecules thus represents promising new strategies to promote hMSC survival to improve the efficacy of transplantation therapy. As complement injury is a barrier to all types of hMSC therapy, our findings are of broad significance to enhance the use of hMSCs for the treatment of a wide range of disorders.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Animals , Mice , Bone Marrow/pathology , Mesenchymal Stem Cells/metabolism , Acute Disease
4.
Blood Cancer Discov ; 3(6): 516-535, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35960210

ABSTRACT

Despite the expanding portfolio of targeted therapies for adults with acute myeloid leukemia (AML), direct implementation in children is challenging due to inherent differences in underlying genetics. Here we established the pharmacologic profile of pediatric AML by screening myeloblast sensitivity to approved and investigational agents, revealing candidates of immediate clinical relevance. Drug responses ex vivo correlated with patient characteristics, exhibited age-specific alterations, and concorded with activities in xenograft models. Integration with genomic data uncovered new gene-drug associations, suggesting actionable therapeutic vulnerabilities. Transcriptome profiling further identified gene-expression signatures associated with on- and off-target drug responses. We also demonstrated the feasibility of drug screening-guided treatment for children with high-risk AML, with two evaluable cases achieving remission. Collectively, this study offers a high-dimensional gene-drug clinical data set that could be leveraged to research the unique biology of pediatric AML and sets the stage for realizing functional precision medicine for the clinical management of the disease. SIGNIFICANCE: We conducted integrated drug and genomic profiling of patient biopsies to build the functional genomic landscape of pediatric AML. Age-specific differences in drug response and new gene-drug interactions were identified. The feasibility of functional precision medicine-guided management of children with high-risk AML was successfully demonstrated in two evaluable clinical cases. This article is highlighted in the In This Issue feature, p. 476.


Subject(s)
Leukemia, Myeloid, Acute , Precision Medicine , Child , Adult , Humans , Precision Medicine/methods , Pharmacogenetics , Leukemia, Myeloid, Acute/drug therapy , Gene Expression Profiling/methods , Transcriptome
5.
J Leukoc Biol ; 112(4): 785-797, 2022 10.
Article in English | MEDLINE | ID: mdl-35694792

ABSTRACT

G-protein-coupled receptors (GPCRs) are the largest and most diverse group of membrane receptors. They are involved in almost every physiologic process and consequently have a pivotal role in an extensive number of pathologies, including genetic, neurologic, and immune system disorders. Indeed, the vast array of GPCRs mechanisms have led to the development of a tremendous number of drug therapies and already account for about a third of marketed drugs. These receptors mediate their downstream signals primarily via G proteins. The regulators of G-protein signaling (RGS) proteins are now in the spotlight as the critical modulatory factors of active GTP-bound Gα subunits of heterotrimeric G proteins to fine-tune the biologic responses driven by the GPCRs. Also, they possess noncanonical functions by multiple mechanisms, such as protein-protein interactions. Essential roles and impacts of these RGS proteins have been revealed in physiology, including hematopoiesis and immunity, and pathologies, including asthma, cancers, and neurologic disorders. This review focuses on the largest subfamily of R4 RGS proteins and provides a brief overview of their structures and G-proteins selectivity. With particular interest, we explore and highlight, their expression in the hematopoietic system and the regulation in the engraftment of hematopoietic stem/progenitor cells (HSPCs). Distinct expression patterns of R4 RGS proteins in the hematopoietic system and their pivotal roles in stem cell trafficking pave the way for realizing new strategies for enhancing the clinical performance of hematopoietic stem cell transplantation. Finally, we discuss the exciting future trends in drug development by targeting RGS activity and expression with small molecules inhibitors and miRNA approaches.


Subject(s)
Biological Products , Heterotrimeric GTP-Binding Proteins , MicroRNAs , RGS Proteins , Guanosine Triphosphate , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism
6.
Int J Mol Sci ; 23(3)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35163838

ABSTRACT

Anthracyclines, such as doxorubicin, are effective chemotherapeutic agents for the treatment of cancer, but their clinical use is associated with severe and potentially life-threatening cardiotoxicity. Despite decades of research, treatment options remain limited. The mitochondria is commonly considered to be the main target of doxorubicin and mitochondrial dysfunction is the hallmark of doxorubicin-induced cardiotoxicity. Here, we review the pathogenic mechanisms of doxorubicin-induced cardiotoxicity and present an update on cardioprotective strategies for this disorder. Specifically, we focus on strategies that can protect the mitochondria and cover different therapeutic modalities encompassing small molecules, post-transcriptional regulators, and mitochondrial transfer. We also discuss the shortcomings of existing models of doxorubicin-induced cardiotoxicity and explore advances in the use of human pluripotent stem cell derived cardiomyocytes as a platform to facilitate the identification of novel treatments against this disorder.


Subject(s)
Cardiotoxicity/etiology , Doxorubicin/adverse effects , Mitochondria, Heart/drug effects , Animals , Doxorubicin/pharmacology , Humans , Neoplasms/drug therapy , Pluripotent Stem Cells/drug effects
7.
Blood Adv ; 5(21): 4380-4392, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34500454

ABSTRACT

Homing and engraftment of hematopoietic stem/progenitor cells (HSPCs) into the bone marrow (BM) microenvironment are tightly regulated by the chemokine stromal cell-derived factor-1 (SDF-1) and its G-protein-coupled receptor C-X-C motif chemokine receptor 4 (CXCR4), which on engagement with G-protein subunits, trigger downstream migratory signals. Regulators of G-protein signaling (RGS) are GTPase-accelerating protein of the Gα subunit and R4 subfamily members have been implicated in SDF-1-directed trafficking of mature hematopoietic cells, yet their expression and influence on HSPCs remain mostly unknown. Here, we demonstrated that human CD34+ cells expressed multiple R4 RGS genes, of which RGS1, RGS2, RGS13, and RGS16 were significantly upregulated by SDF-1 in a CXCR4-dependent fashion. Forced overexpression of RGS1, RGS13, or RGS16 in CD34+ cells not only inhibited SDF-1-directed migration, calcium mobilization, and phosphorylation of AKT, ERK, and STAT3 in vitro, but also markedly reduced BM engraftment in transplanted NOD/SCID mice. Genome-wide microarray analysis of RGS-overexpressing CD34+ cells detected downregulation of multiple effectors with established roles in stem cell trafficking/maintenance. Convincingly, gain-of-function of selected effectors or ex vivo priming with their ligands significantly enhanced HSPC engraftment. We also constructed an evidence-based network illustrating the overlapping mechanisms of RGS1, RGS13, and RGS16 downstream of SDF-1/CXCR4 and Gαi. This model shows that these RGS members mediate compromised kinase signaling and negative regulation of stem cell functions, complement activation, proteolysis, and cell migration. Collectively, this study uncovers an essential inhibitory role of specific R4 RGS proteins in stem cell engraftment, which could potentially be exploited to develop improved clinical HSPC transplantation protocols.


Subject(s)
Hematopoietic Stem Cell Transplantation , RGS Proteins , Animals , Antigens, CD34 , Hematopoietic Stem Cells , Humans , Mice , Mice, Inbred NOD , Mice, SCID , RGS Proteins/genetics , Receptors, CXCR4/genetics
8.
Pflugers Arch ; 473(7): 1023-1039, 2021 07.
Article in English | MEDLINE | ID: mdl-33928456

ABSTRACT

Human pluripotent stem cells (hPSC) self-renew and represent a potentially unlimited source for the production of cardiomyocytes (CMs) suitable for studies of human cardiac development, drug discovery, cardiotoxicity testing, and disease modelling and for cell-based therapies. However, most cardiac differentiation protocols yield mixed cultures of atrial-, ventricular-, and pacemaker-like cells at various stages of development, as well as non-CMs. The proportions and maturation states of these cell types result from disparities among differentiation protocols and time of cultivation, as well as hPSC reprogramming inconsistencies and genetic background variations. The reproducible use of hPSC-CMs for research and therapy is therefore limited by issues of cell population heterogeneity and functional states of maturation. A validated method that overcomes issues of cell heterogeneity is immunophenotyping coupled with live cell sorting, an approach that relies on accessible surface markers restricted to the desired cell type(s). Here we review current progress in unravelling heterogeneity in hPSC-cardiac cultures and in the identification of surface markers suitable for defining cardiac identity, subtype specificity, and maturation states.


Subject(s)
Antigens, Surface/metabolism , Biomarkers/metabolism , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation/physiology , Humans , Immunophenotyping/methods , Phenotype
9.
Stem Cell Res ; 49: 102040, 2020 12.
Article in English | MEDLINE | ID: mdl-33099108

ABSTRACT

We derived an integration-free induced pluripotent stem cell (iPSC) line from the peripheral blood mononuclear cells (PBMCs) of a 23-year-old male patient. This patient carries a 5' splice site point mutation in intron 1 (c.31+1G>A) of the dystrophin gene, a mutation associated with X-linked dilated cardiomyopathy (XLDCM). Sendai virus was used to reprogram the PBMCs and deliver OCT3/4, SOX2, c-MYC, and KLF4 factors. The iPSC line (HKUi002-A) generated preserved the mutation, expressed common pluripotency markers, differentiated into three germ layers in vivo, and exhibited a normal karyotype. Further differentiation into cardiomyocytes enables the study of the disease mechanisms of XLDCM.


Subject(s)
Induced Pluripotent Stem Cells , Adult , Cardiomyopathy, Dilated , Cell Differentiation , Genomics , Humans , Kruppel-Like Factor 4 , Leukocytes, Mononuclear , Male , Mutation , Myocytes, Cardiac , Young Adult
11.
Adv Biosyst ; 3(2): e1800248, 2019 02.
Article in English | MEDLINE | ID: mdl-32627368

ABSTRACT

Here, a multichannel organic electrochemical transistor (OECT) array is reported for electrophysiological monitoring and mapping of action potential propagation of a wide range of cardiac cells, including cell lines, primary cell lines, and human-sourced stem cell derivatives in 2D and 3D structures. The results suggest that the ability to exploit this OECT-based platform to map 2D action potential propagation provides a viable strategy to better characterize cardiac cells in response to various chronotropic drugs. The effects of chronotropic agents Isoproterenol and Verapamil on cardiac tissues validate the utility of OECT for drug screening capability, and a preliminary demonstration of a 64-channel OECT array to monitor the cardiac action potentials for better spatial resolution is presented. The study demonstrates that OECT will be a viable and versatile platform for applications in medical and pharmacological industries.


Subject(s)
Cardiac Electrophysiology , Models, Cardiovascular , Myocytes, Cardiac , Action Potentials/physiology , Animals , Cardiac Electrophysiology/instrumentation , Cardiac Electrophysiology/methods , Cardiovascular Agents/pharmacology , Cell Culture Techniques , Cells, Cultured , Drug Evaluation, Preclinical/instrumentation , Equipment Design , Heart/physiology , Humans , Microtechnology/instrumentation , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Rats , Transistors, Electronic
12.
Cardiovasc Res ; 114(6): 894-906, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29373717

ABSTRACT

Aims: MicroRNAs (miRNAs) are crucial for the post-transcriptional control of protein-encoding genes and together with transcription factors (TFs) regulate gene expression; however, the regulatory activities of miRNAs during cardiac development are only partially understood. In this study, we tested the hypothesis that integrative computational approaches could identify miRNAs that experimentally could be shown to regulate cardiomyogenesis. Methods and results: We integrated expression profiles with bioinformatics analyses of miRNA and TF regulatory programs to identify candidate miRNAs involved with cardiac development. Expression profiling showed that miR-200c, which is not normally detected in adult heart, is progressively down-regulated both during cardiac development and in vitro differentiation of human embryonic stem cells (hESCs) to cardiomyocytes (CMs). We employed computational methodologies to predict target genes of both miR-200c and five key cardiac TFs to identify co-regulated gene networks. The inferred cardiac networks revealed that the cooperative action of miR-200c with these five key TFs, including three (GATA4, SRF and TBX5) targeted by miR-200c, should modulate key processes and pathways necessary for CM development and function. Experimentally, over-expression (OE) of miR-200c in hESC-CMs reduced the mRNA levels of GATA4, SRF and TBX5. Cardiac expression of Ca2+, K+ and Na+ ion channel genes (CACNA1C, KCNJ2 and SCN5A) were also significantly altered by knockdown or OE of miR-200c. Luciferase reporter assays validated miR-200c binding sites on the 3' untranslated region of CACNA1C. In hESC-CMs, elevated miR-200c increased beating frequency, and repressed both Ca2+ influx, mediated by the L-type Ca2+ channel and Ca2+ transients. Conclusions: Our analyses demonstrate that miR-200c represses hESC-CM differentiation and maturation. The integrative computation and experimental approaches described here, when applied more broadly, will enhance our understanding of the interplays between miRNAs and TFs in controlling cardiac development and disease processes.


Subject(s)
Cell Differentiation/genetics , Computational Biology/methods , Gene Regulatory Networks , Human Embryonic Stem Cells/metabolism , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Transcriptome , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Calcium Signaling/genetics , Cell Line , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genotype , Heart Rate/genetics , Humans , MicroRNAs/metabolism , Myocardial Contraction/genetics , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Phenotype , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Reproducibility of Results , Serum Response Factor/genetics , Serum Response Factor/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...