Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-37292968

ABSTRACT

Background & Aims: Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. Methods: We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We validated differences in key pathways through functional studies and determined if these cultures recapitulate known features of the infant intestinal epithelium. Results: RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. Conclusions: HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex-vivo model to advance studies of infant-specific diseases and drug discovery for this population.

2.
J Clin Invest ; 133(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37909332

ABSTRACT

Cronkhite-Canada Syndrome (CCS) is a rare, noninherited polyposis syndrome affecting 1 in every million individuals. Despite over 50 years of CCS cases, the etiopathogenesis and optimal treatment for CCS remains unknown due to the rarity of the disease and lack of model systems. To better understand the etiology of CCS, we generated human intestinal organoids (HIOs) from intestinal stem cells isolated from 2 patients. We discovered that CCS HIOs are highly proliferative and have increased numbers of enteroendocrine cells producing serotonin (also known as 5-hydroxytryptamine or 5HT). These features were also confirmed in patient tissue biopsies. Recombinant 5HT increased proliferation of non-CCS donor HIOs and inhibition of 5HT production in the CCS HIOs resulted in decreased proliferation, suggesting a link between local epithelial 5HT production and control of epithelial stem cell proliferation. This link was confirmed in genetically engineered HIOs with an increased number of enteroendocrine cells. This work provides a new mechanism to explain the pathogenesis of CCS and illustrates the important contribution of HIO cultures to understanding disease etiology and in the identification of novel therapies. Our work demonstrates the principle of using organoids for personalized medicine and sheds light on how intestinal hormones can play a role in intestinal epithelial proliferation.


Subject(s)
Colorectal Neoplasms , Intestinal Polyposis , Humans , Serotonin , Intestines , Organoids/pathology , Colorectal Neoplasms/pathology , Intestinal Polyposis/genetics , Intestinal Polyposis/pathology
3.
Insects ; 11(2)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979389

ABSTRACT

Spissistilus festinus (Say, 1830) (Hemiptera: Membracidae) is a frequent pest of leguminous crops in the Southern United States, and a vector of grapevine red blotch virus. There is currently no information on the genetic diversity of S. festinus. In this study, populations of S. festinus were collected in 2015-2017 from various crops and geographic locations in the United States, and fragments of the mitochondrial cytochrome C oxidase 1 (mt-COI) gene and the nuclear internal transcribed spacer 2 (ITS2) region were characterized by polymerase chain reaction and sequencing. Maximum-likelihood and Bayesian analyses of the mt-COI and ITS2 sequences yielded similar phylogenetic tree topologies, revealing two distinct genetic S. festinus lineages with all of the specimens from California comprising one phylogenetic clade, alongside a single GenBank entry from Arizona, and all specimens from the Southeastern United States comprising a statistically-supported distinct clade, regardless of host and year of collection. The mt-COI gene fragment showed up to 10.8% genetic distance between the two phylogenetic clades. These results suggest the existence of two genotypes within S. festinus in the United States. The only distinct morphological trait between the two genotypes was a less elevated pronotum in the representative specimens from California, compared to the representative specimens from the Southeastern United States. Since this phenotypic feature is inconspicuous, a diagnostic polymerase chain reaction targeting a variable region of the mt-COI fragment was developed to reliably distinguish between the specimens of the two genotypes of S. festinus and to facilitate their specific identification.

SELECTION OF CITATIONS
SEARCH DETAIL
...