Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Internet Res ; 23(8): e28229, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34383671

ABSTRACT

BACKGROUND: Recently, food science has been garnering a lot of attention. There are many open research questions on food interactions, as one of the main environmental factors, with other health-related entities such as diseases, treatments, and drugs. In the last 2 decades, a large amount of work has been done in natural language processing and machine learning to enable biomedical information extraction. However, machine learning in food science domains remains inadequately resourced, which brings to attention the problem of developing methods for food information extraction. There are only few food semantic resources and few rule-based methods for food information extraction, which often depend on some external resources. However, an annotated corpus with food entities along with their normalization was published in 2019 by using several food semantic resources. OBJECTIVE: In this study, we investigated how the recently published bidirectional encoder representations from transformers (BERT) model, which provides state-of-the-art results in information extraction, can be fine-tuned for food information extraction. METHODS: We introduce FoodNER, which is a collection of corpus-based food named-entity recognition methods. It consists of 15 different models obtained by fine-tuning 3 pretrained BERT models on 5 groups of semantic resources: food versus nonfood entity, 2 subsets of Hansard food semantic tags, FoodOn semantic tags, and Systematized Nomenclature of Medicine Clinical Terms food semantic tags. RESULTS: All BERT models provided very promising results with 93.30% to 94.31% macro F1 scores in the task of distinguishing food versus nonfood entity, which represents the new state-of-the-art technology in food information extraction. Considering the tasks where semantic tags are predicted, all BERT models obtained very promising results once again, with their macro F1 scores ranging from 73.39% to 78.96%. CONCLUSIONS: FoodNER can be used to extract and annotate food entities in 5 different tasks: food versus nonfood entities and distinguishing food entities on the level of food groups by using the closest Hansard semantic tags, the parent Hansard semantic tags, the FoodOn semantic tags, or the Systematized Nomenclature of Medicine Clinical Terms semantic tags.


Subject(s)
Algorithms , Natural Language Processing , Humans , Information Storage and Retrieval , Machine Learning , Semantics
2.
Trends Food Sci Technol ; 104: 268-272, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32905099

ABSTRACT

BACKGROUND: The COVID-19 pandemic affects all aspects of human life including their food consumption. The changes in the food production and supply processes introduce changes to the global dietary patterns. SCOPE AND APPROACH: To study the COVID-19 impact on food consumption process, we have analyzed two data sets that consist of food preparation recipes published before (69,444) and during the quarantine (10,009) period. Since working with large data sets is a time-consuming task, we have applied a recently proposed artificial intelligence approach called DietHub. The approach uses the recipe preparation description (i.e. text) and automatically provides a list of main ingredients annotated using the Hansard semantic tags. After extracting the semantic tags of the ingredients for every recipe, we have compared the food consumption patterns between the two data sets by comparing the relative frequency of the ingredients that compose the recipes. KEY FINDINGS AND CONCLUSIONS: Using the AI methodology, the changes in the food consumption patterns before and during the COVID-19 pandemic are obvious. The highest positive difference in the food consumption can be found in foods such as "Pulses/ plants producing pulses", "Pancake/Tortilla/Outcake", and "Soup/pottage", which increase by 300%, 280%, and 100%, respectively. Conversely, the largest decrease in consumption can be food for food such as "Order Perciformes (type of fish)", "Corn/cereals/grain", and "Wine-making", with a reduction of 50%, 40%, and 30%, respectively. This kind of analysis is valuable in times of crisis and emergencies, which is a very good example of the scientific support that regulators require in order to take quick and appropriate response.

3.
Food Chem Toxicol ; 138: 111169, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32088249

ABSTRACT

In food and toxicology science, a huge amount of research and other data has been collected. To enable its full utilization, advanced statistical and computer methods are required. All data is related to food items, but additionally include different kinds of information. Nowadays the consumption of avocado has increased. To understand the full impact of this increased consumption on public health and the environment, different data related to avocado need to be considered. In this paper, we present an approach for representing foods in the form of vectors of continuous numbers (food embeddings) as an alternative solution to manual indexing. The utility of representing food data as a vector of continuous numbers was evaluated and demonstrated in four tasks: i) automated determination of different food groups, ii) automated detection of the food class for each food concept (raw, derivative or composite), iii) identification of most similar food concepts for a given food concept, and iv) qualitative evaluation by a food expert. The experimental results showed that these kind of vector representations outperform the traditional representational methods used for food data analysis, and thus they present a step forward to more advanced food data analysis used for discovering new knowledge.


Subject(s)
Data Analysis , Databases, Factual , Food/classification , Taste , Terminology as Topic
4.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-31682732

ABSTRACT

The existence of annotated text corpora is essential for the development of public health services and tools based on natural language processing (NLP) and text mining. Recently organized biomedical NLP shared tasks have provided annotated corpora related to different biomedical entities such as genes, phenotypes, drugs, diseases and chemical entities. These are needed to develop named-entity recognition (NER) models that are used for extracting entities from text and finding their relations. However, to the best of our knowledge, there are limited annotated corpora that provide information about food entities despite food and dietary management being an essential public health issue. Hence, we developed a new annotated corpus of food entities, named FoodBase. It was constructed using recipes extracted from Allrecipes, which is currently the largest food-focused social network. The recipes were selected from five categories: 'Appetizers and Snacks', 'Breakfast and Lunch', 'Dessert', 'Dinner' and 'Drinks'. Semantic tags used for annotating food entities were selected from the Hansard corpus. To extract and annotate food entities, we applied a rule-based food NER method called FoodIE. Since FoodIE provides a weakly annotated corpus, by manually evaluating the obtained results on 1000 recipes, we created a gold standard of FoodBase. It consists of 12 844 food entity annotations describing 2105 unique food entities. Additionally, we provided a weakly annotated corpus on an additional 21 790 recipes. It consists of 274 053 food entity annotations, 13 079 of which are unique. The FoodBase corpus is necessary for developing corpus-based NER models for food science, as a new benchmark dataset for machine learning tasks such as multi-class classification, multi-label classification and hierarchical multi-label classification. FoodBase can be used for detecting semantic differences/similarities between food concepts, and after all we believe that it will open a new path for learning food embedding space that can be used in predictive studies.


Subject(s)
Cooking , Data Curation , Databases, Factual , Food , Natural Language Processing , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...