Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-37503155

ABSTRACT

Biallelic germline mutations in the SLC25A1 gene lead to combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a fatal systemic disease uniquely characterized by the accumulation of both enantiomers of 2-hydroxyglutaric acid (2HG). How SLC25A1 deficiency contributes to D/L-2HGA and the role played by 2HG is unclear and no therapy exists. Both enantiomers act as oncometabolites, but their activities in normal tissues remain understudied. Here we show that mice lacking both SLC25A1 alleles exhibit developmental abnormalities that mirror human D/L-2HGA. SLC25A1 deficient cells undergo premature senescence, suggesting that loss of proliferative capacity underlies the pathogenesis of D/L-2HGA. Remarkably, D- and L-2HG directly induce senescence and treatment of zebrafish embryos with the combination of D- and L-2HG phenocopies SLC25A1 loss, leading to developmental abnormalities in an additive fashion relative to either enantiomer alone. Metabolic analyses further demonstrate that cells with dysfunctional SLC25A1 undergo mitochondrial respiratory deficit and remodeling of the metabolism and we propose several strategies to correct these defects. These results reveal for the first time pathogenic and growth suppressive activities of 2HG in the context of SLC25A1 deficiency and suggest that targeting the 2HG pathway may be beneficial for the treatment of D/L-2HGA.

2.
Mol Metab ; 79: 101858, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141847

ABSTRACT

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) affects 1 in 3 adults and contributes to advanced liver injury and cardiometabolic disease. While recent evidence points to involvement of the brain in NAFLD, the downstream neural circuits and neuronal molecular mechanisms involved in this response, remain unclear. Here, we investigated the role of a unique forebrain-hypothalamic circuit in NAFLD. METHODS: Chemogenetic activation and inhibition of circumventricular subfornical organ (SFO) neurons that project to the paraventricular nucleus of the hypothalamus (PVN; SFO→PVN) in mice were used to study the role of SFO→PVN signaling in NAFLD. Novel scanning electron microscopy techniques, histological approaches, molecular biology techniques, and viral methodologies were further used to delineate the role of endoplasmic reticulum (ER) stress within this circuit in driving NAFLD. RESULTS: In lean animals, acute chemogenetic activation of SFO→PVN neurons was sufficient to cause hepatic steatosis in a liver sympathetic nerve dependent manner. Conversely, inhibition of this forebrain-hypothalamic circuit rescued obesity-associated NAFLD. Furthermore, dietary NAFLD is associated with marked ER ultrastructural alterations and ER stress in the PVN, which was blunted following reductions in excitatory signaling from the SFO. Finally, selective inhibition of PVN ER stress reduced hepatic steatosis during obesity. CONCLUSIONS: Collectively, these findings characterize a previously unrecognized forebrain-hypothalamic-ER stress circuit that is involved in hepatic steatosis, which may point to future therapeutic strategies for NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Obesity , Paraventricular Hypothalamic Nucleus/physiology , Sympathetic Nervous System
3.
PNAS Nexus ; 2(10): pgad334, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37901440

ABSTRACT

Insults to the central nervous system (CNS) elicit common glial responses including microglial activation evidenced by functional, morphological, and phenotypic changes, as well as astrocyte reactions including hypertrophy, altered process orientation, and changes in gene expression and function. However, the cellular and molecular mechanisms that initiate and modulate such glial response are less well-defined. Here we show that an adult cortical lesion generates a population of ultrastructurally unique microglial-like cells that express Epithelial-Mesenchymal Transcription factors including Snail. Knockdown of Snail with antisense oligonucleotides results in a postinjury increase in activated microglial cells, elevation in astrocyte reactivity with increased expression of C3 and phagocytosis, disruption of astrocyte junctions and neurovascular structure, increases in neuronal cell death, and reduction in cortical synapses. These changes were associated with alterations in pro-inflammatory cytokine expression. By contrast, overexpression of Snail through microglia-targeted an adeno-associated virus (AAV) improved many of the injury characteristics. Together, our results suggest that the coordination of glial responses to CNS injury is partly mediated by epithelial-mesenchymal transition-factors (EMT-Fsl).

4.
Cell Rep Methods ; 3(7): 100535, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37533651

ABSTRACT

The identification and characterization of genomic safe harbor sites (GSHs) can facilitate consistent transgene activity with minimal disruption to the host cell genome. We combined computational genome annotation and chromatin structure analysis to predict the location of four GSHs in the human blood fluke, Schistosoma mansoni, a major infectious pathogen of the tropics. A transgene was introduced via CRISPR-Cas-assisted homology-directed repair into one of the GSHs in the egg of the parasite. Gene editing efficiencies of 24% and transgene-encoded fluorescence of 75% of gene-edited schistosome eggs were observed. The approach advances functional genomics for schistosomes by providing a tractable path for generating transgenics using homology-directed, repair-catalyzed transgene insertion. We also suggest that this work will serve as a roadmap for the development of similar approaches in helminths more broadly.


Subject(s)
Gene Editing , Schistosoma mansoni , Animals , Humans , Schistosoma mansoni/genetics , Transgenes/genetics , Animals, Genetically Modified/genetics
5.
J Neurophysiol ; 130(2): 345-352, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37435651

ABSTRACT

Dysregulation in the paraventricular nucleus of the hypothalamus (PVN) is associated with a variety of diseases including those related to obesity. Although most investigations have focused on molecular changes, structural alterations in PVN neurons can reveal underlying functional disruptions. Although electron microscopy (EM) can provide nanometer resolution of brain structures, an inherent limitation of traditional transmission EM is the single field of view nature of data collection. To overcome this, we used large-field-of-view high-resolution backscatter scanning electron microscopy (bSEM) of the PVN. By stitching high-resolution bSEM images, taken from normal chow and high-fat diet mice, we achieved interactive, zoomable maps that allow for low-magnification screening of the entire PVN and high-resolution analyses of ultrastructure at the level of the smallest cellular organelle. Using this approach, quantitative analysis across the PVN revealed marked electron-dense regions within neuronal nucleoplasm following high-fat diet feeding, with an increase in kurtosis, indicative of a shift away from a normal distribution. Furthermore, measures of skewness indicated a shift toward darker clustered electron-dense regions, potentially indicative of heterochromatin clusters. We further demonstrate the utility to map out healthy and altered neurons throughout the PVN and the ability to remotely perform bSEM imaging in situations that require social distancing, such as the COVID-19 pandemic. Collectively, these findings present an approach that allows for the precise placement of PVN cells within an overall structural and functional map of the PVN. Moreover, they suggest that obesity may disrupt PVN neuronal chromatin structure.NEW & NOTEWORTHY Paraventricular nucleus of the hypothalamus (PVN) alterations are linked to obesity-related conditions, but limited knowledge exists about neuroanatomical changes in this region. A large-field-of-view backscatter scanning electron microscopy (bSEM) method was used, which allowed the identification of up to 40 PVN neurons in individual samples. During obesity in mice, bSEM revealed changes in PVN neuronal nucleoplasm, possibly indicating chromatin clustering. This microscopy advancement offers valuable insights into neuroanatomy in both healthy and disease conditions.


Subject(s)
COVID-19 , Paraventricular Hypothalamic Nucleus , Mice , Animals , Humans , Microscopy, Electron, Scanning , Pandemics , Hypothalamus , Obesity , Diet, High-Fat/adverse effects
6.
Res Sq ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37333330

ABSTRACT

The Ebola virus (EBOV) transcriptional regulation involves host protein phosphatases PP1 and PP2A, which dephosphorylate the transcriptional cofactor of EBOV polymerase VP30. The 1E7-03 compound, which targets PP1, induces VP30 phosphorylation and inhibits EBOV infection. This study aimed to investigate the role of PP1 in EBOV replication. When EBOV-infected cells were continuously treated with 1E7-03, the NP E619K mutation was selected. This mutation moderately reduced EBOV minigenome transcription, which was restored by the treatment with 1E7-03. Formation of EBOV capsids, when NP was co-expressed with VP24 and VP35, was impaired with NPE 619K. Treatment with 1E7-03 restored capsid formation by NP E619K mutation, but inhibited capsids formed by WT NP. The dimerization of NP E619K, tested in a split NanoBiT assay, was significantly decreased (~ 15-fold) compared to WT NP. NP E619K bound more efficiently to PP1 (~ 3-fold) but not B56 subunit of PP2A or VP30. Cross-linking and co-immunoprecipitation experiments showed fewer monomers and dimers for NP E619K which were increased with 1E7-03 treatment. NP E619K showed increased co-localization with PP1α compared to WT NP. Mutations of potential PP1 binding sites and NP deletions disrupted its interaction with PP1. Collectively, our findings suggest that PP1 binding to the NP regulates NP dimerization and capsid formation, and that NP E619K mutation, which has the enhanced PP1 binding, disrupts these processes. Our results point to a new role for PP1 in EBOV replication in which NP binding to PP1 may facilitate viral transcription by delaying capsid formation and EBOV replication.

7.
Sci Rep ; 13(1): 2864, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36806315

ABSTRACT

Platelets play a crucial role in cancer and thrombosis. However, the receptor-ligand repertoire mediating prostate cancer (PCa) cell-platelet interactions and ensuing consequences have not been fully elucidated. Microvilli emanating from the plasma membrane of PCa cell lines (RC77 T/E, MDA PCa 2b) directly contacted individual platelets and platelet aggregates. PCa cell-platelet interactions were associated with calcium mobilization in platelets, and translocation of P-selectin and integrin αIIbß3 onto the platelet surface. PCa cell-platelet interactions reciprocally promoted PCa cell invasion and apoptotic resistance, and these events were insensitive to androgen receptor blockade by bicalutamide. PCa cells were exceedingly sensitive to activation by platelets in vitro, occurring at a PCa cell:platelet coculture ratio as low as 1:10 (whereas PCa patient blood contains 1:2,000,000 per ml). Conditioned medium from cocultures stimulated PCa cell invasion but not apoptotic resistance nor platelet aggregation. Candidate transmembrane signaling proteins responsible for PCa cell-platelet oncogenic events were identified by RNA-Seq and broadly divided into 4 major categories: (1) integrin-ligand, (2) EPH receptor-ephrin, (3) immune checkpoint receptor-ligand, and (4) miscellaneous receptor-ligand interactions. Based on antibody neutralization and small molecule inhibitor assays, PCa cell-stimulated calcium mobilization in platelets was found to be mediated by a fibronectin1 (FN1)-αIIbß3 signaling axis. Platelet-stimulated PCa cell invasion was facilitated by a CD55-adhesion G protein coupled receptor E5 (ADGRE5) axis, with contribution from platelet cytokines CCL3L1 and IL32. Platelet-stimulated PCa cell apoptotic resistance relied on ephrin-EPH receptor and lysophosphatidic acid (LPA)-LPA receptor (LPAR) signaling. Of participating signaling partners, FN1 and LPAR3 overexpression was observed in PCa specimens compared to normal prostate, while high expression of CCR1 (CCL3L1 receptor), EPHA1 and LPAR5 in PCa was associated with poor patient survival. These findings emphasize that non-overlapping receptor-ligand pairs participate in oncogenesis and thrombosis, highlighting the complexity of any contemplated clinical intervention strategy.


Subject(s)
Calcium , Prostatic Neoplasms , Male , Humans , Ligands , Receptor, EphA1 , Integrins
8.
bioRxiv ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38234775

ABSTRACT

Visual information processing is sculpted by a diverse group of inhibitory interneurons in the retina called amacrine cells. Yet, for most of the >60 amacrine cell types, molecular identities and specialized functional attributes remain elusive. Here, we developed an intersectional genetic strategy to target a group of wide-field amacrine cells (WACs) in mouse retina that co-express the transcription factor Bhlhe22 and the Kappa Opioid Receptor (KOR; B/K WACs). B/K WACs feature straight, unbranched dendrites spanning over 0.5 mm (∼15° visual angle) and produce non-spiking responses to either light increments or decrements. Two-photon dendritic population imaging reveals Ca 2+ signals tuned to the physical orientations of B/K WAC dendrites, signifying a robust structure-function alignment. B/K WACs establish divergent connections with multiple retinal neurons, including unexpected connections with non-orientation-tuned ganglion cells and bipolar cells. Our work sets the stage for future comprehensive investigations of the most enigmatic group of retinal neurons: WACs.

9.
Nature ; 599(7886): 673-678, 2021 11.
Article in English | MEDLINE | ID: mdl-34732895

ABSTRACT

Immune exclusion predicts poor patient outcomes in multiple malignancies, including triple-negative breast cancer (TNBC)1. The extracellular matrix (ECM) contributes to immune exclusion2. However, strategies to reduce ECM abundance are largely ineffective or generate undesired outcomes3,4. Here we show that discoidin domain receptor 1 (DDR1), a collagen receptor with tyrosine kinase activity5, instigates immune exclusion by promoting collagen fibre alignment. Ablation of Ddr1 in tumours promotes the intratumoral penetration of T cells and obliterates tumour growth in mouse models of TNBC. Supporting this finding, in human TNBC the expression of DDR1 negatively correlates with the intratumoral abundance of anti-tumour T cells. The DDR1 extracellular domain (DDR1-ECD), but not its intracellular kinase domain, is required for immune exclusion. Membrane-untethered DDR1-ECD is sufficient to rescue the growth of Ddr1-knockout tumours in immunocompetent hosts. Mechanistically, the binding of DDR1-ECD to collagen enforces aligned collagen fibres and obstructs immune infiltration. ECD-neutralizing antibodies disrupt collagen fibre alignment, mitigate immune exclusion and inhibit tumour growth in immunocompetent hosts. Together, our findings identify a mechanism for immune exclusion and suggest an immunotherapeutic target for increasing immune accessibility through reconfiguration of the tumour ECM.


Subject(s)
Collagen/metabolism , Discoidin Domain Receptor 1/metabolism , Extracellular Matrix/metabolism , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Tumor Escape , Animals , Cell Line, Tumor , Discoidin Domain Receptor 1/antagonists & inhibitors , Discoidin Domain Receptor 1/deficiency , Discoidin Domain Receptor 1/genetics , Disease Models, Animal , Extracellular Matrix/immunology , Female , Gene Deletion , Gene Knockout Techniques , Humans , Immunocompetence/immunology , Immunotherapy , Mice , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Triple Negative Breast Neoplasms/therapy
10.
Front Neurol ; 12: 708395, 2021.
Article in English | MEDLINE | ID: mdl-34589045

ABSTRACT

In congenital vestibular disorders (CVDs), children develop an abnormal inner ear before birth and face postnatal challenges to maintain posture, balance, walking, eye-hand coordination, eye tracking, or reading. Only limited information on inner ear pathology is acquired from clinical imaging of the temporal bone or studying histological slides of the temporal bone. A more comprehensive and precise assessment and determination of the underlying mechanisms necessitate analyses of the disorders at the cellular level, which can be achieved using animal models. Two main criteria for a suitable animal model are first, a pathology that mirrors the human disorder, and second, a reproducible experimental outcome leading to statistical power. With over 40 genes that affect inner ear development, the phenotypic abnormalities resulting from congenital vestibular disorders (CVDs) are highly variable. Nonetheless, there is a large subset of CVDs that form a common phenotype of a sac-like inner ear with the semicircular canals missing or dysplastic, and discrete abnormalities in the vestibular sensory organs. We have focused the review on this subset, but to advance research on CVDs we have added other CVDs not forming a sac-like inner ear. We have included examples of animal models used to study these CVDs. Presently, little is known about the central pathology resulting from CVDs at the cellular level in the central vestibular neural network, except for preliminary studies on a chick model that show significant loss of second-order, vestibular reflex projection neurons.

11.
Nat Neurosci ; 24(10): 1392-1401, 2021 10.
Article in English | MEDLINE | ID: mdl-34400844

ABSTRACT

Compromised placental function or premature loss has been linked to diverse neurodevelopmental disorders. Here we show that placenta allopregnanolone (ALLO), a progesterone-derived GABA-A receptor (GABAAR) modulator, reduction alters neurodevelopment in a sex-linked manner. A new conditional mouse model, in which the gene encoding ALLO's synthetic enzyme (akr1c14) is specifically deleted in trophoblasts, directly demonstrated that placental ALLO insufficiency led to cerebellar white matter abnormalities that correlated with autistic-like behavior only in male offspring. A single injection of ALLO or muscimol, a GABAAR agonist, during late gestation abolished these alterations. Comparison of male and female human preterm infant cerebellum also showed sex-linked myelination marker alteration, suggesting similarities between mouse placental ALLO insufficiency and human preterm brain development. This study reveals a new role for a placental hormone in shaping brain regions and behaviors in a sex-linked manner. Placental hormone replacement might offer novel therapeutic opportunities to prevent later neurobehavioral disorders.


Subject(s)
Cerebellum/growth & development , Endocrine Glands/physiology , Placenta/physiology , Pregnanolone/deficiency , Pregnanolone/physiology , Social Behavior , Aldehyde Reductase/genetics , Animals , Autism Spectrum Disorder/etiology , Cerebellum/physiology , Female , GABA Agonists/pharmacology , GABA Modulators , Gene Deletion , Humans , Infant , Infant, Newborn , Male , Mice , Muscimol/pharmacology , Pregnancy , Receptors, GABA-A/physiology , Sex Characteristics , Trophoblasts/metabolism , White Matter/pathology
12.
Hum Mol Genet ; 29(18): 3081-3093, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32901287

ABSTRACT

We identified divergent modes of initial axon growth that prefigure disrupted differentiation of the trigeminal nerve (CN V), a cranial nerve essential for suckling, feeding and swallowing (S/F/S), a key innate behavior compromised in multiple genetic developmental disorders including DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS). We combined rapid in vivo labeling of single CN V axons in LgDel+/- mouse embryos, a genomically accurate 22q11.2DS model, and 3D imaging to identify and quantify phenotypes that could not be resolved using existing methods. We assessed these phenotypes in three 22q11.2-related genotypes to determine whether individual CN V motor and sensory axons wander, branch and sprout aberrantly in register with altered anterior-posterior hindbrain patterning and gross morphological disruption of CN V seen in LgDel+/-. In the additional 22q11.2-related genotypes: Tbx1+/-, Ranbp1-/-, Ranbp1+/- and LgDel+/-:Raldh2+/-; axon phenotypes are seen when hindbrain patterning and CN V gross morphology is altered, but not when it is normal or restored toward WT. This disordered growth of CN V sensory and motor axons, whose appropriate targeting is critical for optimal S/F/S, may be an early, critical determinant of imprecise innervation leading to inefficient oropharyngeal function associated with 22q11.2 deletion from birth onward.


Subject(s)
Aldehyde Oxidoreductases/genetics , DiGeorge Syndrome/genetics , Nuclear Proteins/genetics , T-Box Domain Proteins/genetics , Animals , Axons/metabolism , Axons/pathology , Chromosome Deletion , DiGeorge Syndrome/physiopathology , Disease Models, Animal , Humans , Mice , Mice, Knockout , Motor Activity/genetics , Phenotype , Rhombencephalon/growth & development , Rhombencephalon/physiopathology , Trigeminal Nerve/pathology
13.
Gynecol Oncol ; 159(2): 527-533, 2020 11.
Article in English | MEDLINE | ID: mdl-32977988

ABSTRACT

OBJECTIVE: Measure the size and shape of talc particles in talcum powder and compare this data to the size and shape of talc particles found in surgically resected tissues from patients with ovarian carcinoma. METHODS: Using polarized light microscopy (PLM) and scanning electron microscopy (SEM), we measured the size and shape of talc particles in samples of talc-containing baby powder (TCBP) and surgically resected pelvic tissues (hysterectomies) from talc-exposed patients with ovarian carcinoma. RESULTS: The most frequent class of particles in TCBP can be unequivocally identified as talc, using both polarized light microscopy and scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX). The talc particles found in resected tissues from ovarian carcinoma patients are similar in size and shape to the most abundant morphological class of particles in TCBP. CONCLUSIONS: This finding, combined with previous epidemiological literature and tissue-based analytical studies, provides further evidence that the small, isodiametric particles that dominate TCBP can migrate from the perineum and become lodged in distal structures in the female reproductive tract, where they may lead to an increased risk of developing ovarian carcinoma.


Subject(s)
Lymph Nodes/chemistry , Omentum/chemistry , Ovary/chemistry , Talc/analysis , Adult , Aged , Carcinoma, Ovarian Epithelial/pathology , Female , Humans , Lymph Nodes/ultrastructure , Microscopy, Electron, Scanning , Middle Aged , Omentum/ultrastructure , Ovarian Neoplasms/pathology , Ovary/ultrastructure , Talc/adverse effects , Talc/pharmacokinetics
14.
eNeuro ; 7(5)2020.
Article in English | MEDLINE | ID: mdl-32855199

ABSTRACT

We asked whether the physiological and morphologic properties of hypoglossal motor neurons (CNXII MNs) that innervate protruder or retractor tongue muscles are disrupted in neonatal LgDel mice that carry a heterozygous deletion parallel to that associated with DiGeorge/22q11.2 deletion syndrome (22q11.2DS). Disrupted coordination of tongue movement in LgDel mouse pups may contribute to suckling, feeding, and swallowing (S/F/S) disruptions that parallel pediatric dysphagia in infants and toddlers with 22q11.2DS. Using an in vitro rhythmically active medullary slice preparation, we found spontaneous firing as well as IPSC frequency differed significantly in neonatal LgDel versus wild-type (WT) protruder and retractor CNXII MNs that were identified by retrograde tracing from their target muscles. In response to respiration-related activity, initiation and decay of transiently increased firing in WT protruder MNs is delayed in LgDel, accompanied by altered excitatory/inhibitory (E/I) balance. In addition, LgDel retractor MNs have a transient increase in firing with diminished IPSC frequency that is not seen in WT. There were no significant differences in cell body volume of either XII class in WT and LgDel Sholl analysis showed the total numbers of dendritic intersections (at 50- and 90-µm radii from the cell soma) were significantly greater for LgDel versus WT retractor MNs. Thus, the physiological, synaptic and cellular properties of distinct classes of CNXII MNs that coordinate tongue movement in neonatal WT mice are altered in LgDel Such changes could contribute to sub-optimal coordination of S/F/S that underlies pediatric dysphagia in 22q11.2DS.


Subject(s)
Deglutition Disorders , DiGeorge Syndrome , Animals , Child , DiGeorge Syndrome/complications , DiGeorge Syndrome/genetics , Disease Models, Animal , Humans , Medulla Oblongata , Mice , Motor Neurons
15.
Cancer Res ; 80(17): 3649-3662, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32605998

ABSTRACT

Despite the outstanding clinical results of immune checkpoint blockade (ICB) in melanoma and other cancers, clinical trials in breast cancer have reported low responses to these therapies. Current efforts are now focused on improving the treatment efficacy of ICB in breast cancer using new combination designs such as molecularly targeted agents, including histone deacetylase inhibitors (HDACi). These epigenetic drugs have been widely described as potent cytotoxic agents for cancer cells. In this work, we report new noncanonical regulatory properties of ultra-selective HDAC6i over the expression and function of epithelial-mesenchymal transition pathways and the invasiveness potential of breast cancer. These unexplored roles position HDAC6i as attractive options to potentiate ongoing immunotherapeutic approaches. These new functional activities of HDAC6i involved regulation of the E-cadherin/STAT3 axis. Pretreatment of tumors with HDAC6i induced critical changes in the tumor microenvironment, resulting in improved effectiveness of ICB and preventing dissemination of cancer cells to secondary niches. Our results demonstrate for the first time that HDAC6i can both improve ICB antitumor immune responses and diminish the invasiveness of breast cancer with minimal cytotoxic effects, thus departing from the cytotoxicity-centric paradigm previously assigned to HDACi. SIGNIFICANCE: Ultraselective HDAC6 inhibitors can reduce tumor growth and invasiveness of breast cancer by noncanonical mechanisms unrelated to the previously cytotoxic properties attributed to HDAC inhibitors.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , Histone Deacetylase 6/metabolism , Immune Checkpoint Inhibitors/pharmacology , Mammary Neoplasms, Experimental/pathology , Triple Negative Breast Neoplasms/pathology , Animals , Cell Proliferation/drug effects , Cell Proliferation/physiology , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/physiology , Female , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/metabolism , Mice , Neoplasm Invasiveness/pathology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism
16.
Front Cell Neurosci ; 14: 74, 2020.
Article in English | MEDLINE | ID: mdl-32300294

ABSTRACT

Astrocytes have been implicated in regulating oligodendrocyte development and myelination in vitro, although their functions in vivo remain less well defined. Using a novel approach to locally ablate GFAP+ astrocytes, we demonstrate that astrocytes are required for normal CNS myelin compaction during development, and for maintaining myelin integrity in the adult. Transient ablation of GFAP+ astrocytes in the mouse spinal cord during the first postnatal week reduced the numbers of mature oligodendrocytes and inhibited myelin formation, while prolonged ablation resulted in myelin that lacked compaction and structural integrity. Ablation of GFAP+ astrocytes in the adult spinal cord resulted in the rapid, local loss of myelin integrity and regional demyelination. The loss of myelin integrity induced by astrocyte ablation was greatly reduced by NMDA receptor antagonists, both in vitro and in vivo, suggesting that myelin stability was affected by elevation of local glutamate levels following astrocyte ablation. Furthermore, targeted delivery of glutamate into adult spinal cord white matter resulted in reduction of myelin basic protein expression and localized disruption of myelin compaction which was also reduced by NMDA receptor blockade. The pathology induced by localized astrocyte loss and elevated exogenous glutamate, supports the concept that astrocytes are critical for maintenance of myelin integrity in the adult CNS and may be primary targets in the initiation of demyelinating diseases of the CNS, such as Neuromyelitis Optica (NMO).

17.
Exp Eye Res ; 194: 107998, 2020 05.
Article in English | MEDLINE | ID: mdl-32209319

ABSTRACT

The intraepithelial corneal nerves (ICNs) that innervate the corneal epithelium are maintained through interactions with corneal epithelial cells and the extracellular matrix they produce. One to several axons bundle together within the basal cell layer and extend parallel to the ocular surface or branch and extend apically. Here we use 3-dimentional (3D) ultrastructural reconstructions of control and trephine injured mouse corneal epithelium and stroma produced using Focused Ion Beam Scanning Electron Microscope (FIB-SEM) to determine whether corneal epithelial or immune cells resident in the epithelium remove axonal debris and degrade it in their lysosomes after trephine injury to the cornea. We demonstrate that axonal fragments are internalized in the corneal epithelium and accumulate within electron dense structures consistent with lysosomes 3 h after trephine injury in both epithelial and immune cells located among the basal cells of the trephine injured cornea. Confocal imaging showed fewer CD45+ immune cells within the corneal epithelium after trephine injury compared to controls. The resolution obtained using FIB-SEM also allowed us to show that the presence of sensory axons at the basal aspect of the epithelial basal cells close to the anterior aspect of the epithelial basement membrane (EBM) is associated with a focal reduction in EBM thickness. In addition, we show using FIB-SEM and confocal imaging that superficial trephine injuries that do not penetrate the stroma, damage the integrity of anterior stromal nerves. These studies are the first to look at the mouse cornea following nerve injury using FIB-SEM.


Subject(s)
Axons/ultrastructure , Corneal Injuries/pathology , Epithelium, Corneal/innervation , Microscopy, Electron, Scanning/methods , Nerve Fibers/ultrastructure , Animals , Corneal Injuries/metabolism , Disease Models, Animal , Epithelium, Corneal/pathology , Male , Mice , Mice, Inbred BALB C
18.
Mol Biochem Parasitol ; 236: 111259, 2020 03.
Article in English | MEDLINE | ID: mdl-31958469

ABSTRACT

The RNA helicase Vasa plays a pivotal role in the development of the germ line. To decipher the functional roles of vasa/PL10-like genes in the human blood fluke Schistosoma mansoni, we performed RNA interference followed by the analysis of the ovary in the adult female. Double-stranded RNA targeting the schistosome vasa-like gene Smvlg1 reduced the volume of the ovary. Changes in morphology of the ovary were analysed using carmine red-staining of the parasites followed by a novel confocal laser scanning microscopy (CLSM)-based approach to control for natural autofluorescence in female schistosome tissues. The reduction in the ovary volume may have been promoted by the loss of germ cells. By contrast, significant differences were not apparent in the number of eggs produced or hatching rate of eggs laid by the female schistosomes transfected with Smvlg1-specific dsRNA. The findings suggested a role for S. mansoni vasa/PL10-like gene -1 in germ cell development within the schistosome ovary that might impact in the pathogenesis and disease transmission by this neglected tropical disease pathogen.


Subject(s)
Genes, Helminth , Ovary , Schistosoma mansoni , Animals , DEAD-box RNA Helicases/genetics , Female , Gene Expression , Genitalia , Microscopy, Confocal/methods , Ovary/anatomy & histology , Ovary/cytology , Ovary/metabolism , RNA Interference , Schistosoma mansoni/genetics , Schistosoma mansoni/metabolism , Transfection/methods
19.
Sci Rep ; 9(1): 17508, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31767918

ABSTRACT

Neutral lipids have been implicated in a host of potentially debilitating human diseases, such as heart disease, type-2 diabetes, and metabolic syndrome. Matrix-assisted laser desorption ionization (MALDI), the method-of-choice for mass spectrometry imaging (MSI), has led to remarkable success in imaging several lipid classes from biological tissue sections. However, due to ion suppression by phospholipids, MALDI has limited ability to efficiently ionize and image neutral lipids, such as triglycerides (TGs). To help overcome this obstacle, we have utilized silicon nanopost arrays (NAPA), a matrix-free laser desorption ionization (LDI) platform. Hidradenitis suppurativa (HS) is a chronic, recurrent inflammatory skin disease of the apocrine sweat glands. The ability of NAPA to efficiently ionize lipids is exploited in the analysis of human skin samples from sufferers of HS. Ionization by LDI from NAPA allows for the detection and imaging of a number of neutral lipid species, including TGs comprised of shorter, odd-chain fatty acids, which strongly suggests an increased bacterial load within the host tissue, as well as hexosylceramides (HexCers) and galabiosyl-/lactosylceramides that appear to be correlated with the presence of HS. Our results demonstrate that NAPA-LDI-MSI is capable of imaging and potentially differentiating healthy and diseased human skin tissues based on changes in detected neutral lipid composition.


Subject(s)
Hidradenitis Suppurativa/metabolism , Lipidomics/methods , Tissue Array Analysis/methods , Humans , Microscopy, Electron, Scanning , Silicon/chemistry , Skin/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
J Neurophysiol ; 122(6): 2272-2283, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31577516

ABSTRACT

Children with congenital vestibular disorders show delayed motor development and challenges in maintaining posture and balance. Computed tomography images reveal that these children have abnormal inner ears in the form of a sac, with the semicircular canals missing or truncated. Little is known about how this inner ear abnormality affects central vestibular development. At present, mice with the chromodomain helicase DNA-binding protein 7 mutation are the most common model for studying congenital vestibular disorders, despite forming multiple diverse inner ear phenotypes and inducing abnormal cerebellar and visual system development. To identify the effects of a sac-like inner ear on central vestibular development, we have designed and implemented a new model, the anterior-posterior axis rotated otocyst (ARO) chick, which forms a sac-like inner ear in 85% of cases. The ARO chick is produced by anterior-posterior rotation of the otocyst at embryonic day 2. Here, we describe for the first time the 15% of ARO chicks that form three small semicircular canals and rename the ARO chicks forming sacs (ARO/s chicks). The basic features of the vestibular sensory organs in ARO/s chicks are similar to those found in patients' sacs, and ARO/s hatchlings experience balance and walking problems like patients. Thus, ARO/s chicks have a reproducible inner ear phenotype without abnormalities in vestibular-related structures, making the model a relatively simple one to evaluate the relationship between the sac-like inner ear pathology and formation of the central vestibular neural circuitry. Here, we describe unpublished details on the surgical approaches to produce ARO chicks, including pitfalls and difficulties to avoid.NEW & NOTEWORTHY This paper describes simple techniques for chick otocyst rotation resulting in a sac-like inner ear (85%), the common phenotype in congenital vestibular disorders. We now describe anterior-posterior axis rotated otocyst chicks, which form three small canals (15%), and rename chicks forming a sac (ARO/s chicks). Basic protocols and potential complications of otocyst rotation are described. With the use of ARO/s chicks, it will be possible to determine how the vestibular neural circuit is modified by sac-like inner ear formation.


Subject(s)
Ear, Inner/pathology , Vestibular Diseases/congenital , Vestibular Diseases/pathology , Vestibular Diseases/physiopathology , Animals , Chick Embryo , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...